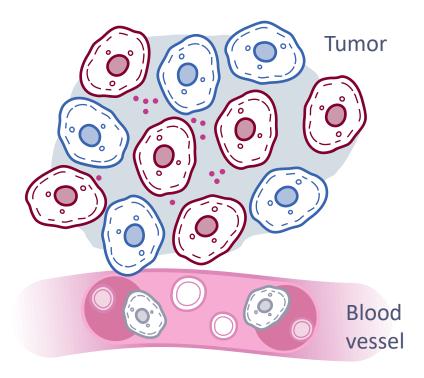
Company Presentation

May 2024

Disclaimers and forward-looking statements

This presentation and the accompanying discussion contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, express or implied statements regarding the Company's plans, progress, and timing relating to the Company's solid tumor programs and the presentation of data, the Company's current and future research and development plans or expectations, the structure, timing and success of the Company's planned preclinical development, submission of INDs, and clinical trials, the potential benefits of any of the Company's proprietary platforms, multiplexing, or current or future product candidates in treating patients, the Company's ability to fund its operating expenses and capital expenditure requirements with its existing cash and cash equivalents, and the Company's goals and strategy. TScan intends such forward-looking statements to be covered by the safe harbor provisions for forward-looking statements contained in Section 21E of the Securities Exchange Act of 1934 and the Private Securities Litigation Reform Act of 1995. In some cases, you can identify forward-looking statements by terms such as, but not limited to, "may," "might," "will," "objective," "intend," "should," "could," "can," "would," "expect," "believe," "anticipate," "project," "target," "design," "estimate," "predict," "potential," "plan," "on track," or similar expressions or the negative of those terms. Such forward-looking statements are based upon current expectations that involve risks, changes in circumstances, assumptions, and uncertainties. The express or implied forward-looking statements included in this presentation are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation: the beneficial characteristics, safety, efficacy, therapeutic effects and potential advantages of TScan's TCR-T therapy candidates; TScan's expectations regarding its preclinical studies being predictive of clinical trial results; the timing of the initiation, progress and expected results of TScan's preclinical studies, clinical trials and its research and development programs;

TScan's plans relating to developing and commercializing its TCR-T therapy candidates, if approved, including sales strategy; estimates of the size of the addressable market for TScan's TCR-T therapy candidates; TScan's manufacturing capabilities and the scalable nature of its manufacturing process; TScan's estimates regarding expenses, future milestone payments and revenue, capital requirements and needs for additional financing; TScan's expectations regarding competition; TScan's anticipated growth strategies; TScan's ability to attract or retain key personnel; TScan's ability to establish and maintain development partnerships and collaborations; TScan's expectations regarding federal, state and foreign regulatory requirements; TScan's ability to obtain and maintain intellectual property protection for its proprietary platform technology and our product candidates; the sufficiency of TScan's existing capital resources to fund its future operating expenses and capital expenditure requirements; and other factors that are described in the "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations" sections of TScan's most recent Annual Report on Form 10-K and any other filings that TScan has made or may make with the SEC in the future.

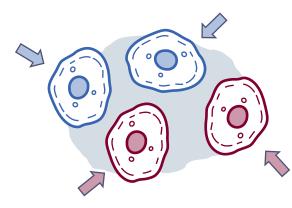

Any forward-looking statements contained in this presentation represent TScan's views only as of the date hereof and should not be relied upon as representing its views as of any subsequent date. Except as required by law, TScan explicitly disclaims any obligation to update any forward-looking statements.

How do we aim to cure cancer?

PROBLEM

- Cancer is heterogeneous
- Cancer is rapidly evolving

PROVEN SOLUTIONS



Treat cancer when it is at its lowest

HEME PROGRAM

Treat with multiple agents simultaneously

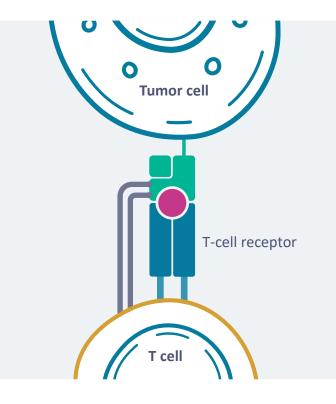
SOLID TUMOR PROGRAM

TScan is building on the remarkable success of immunotherapy

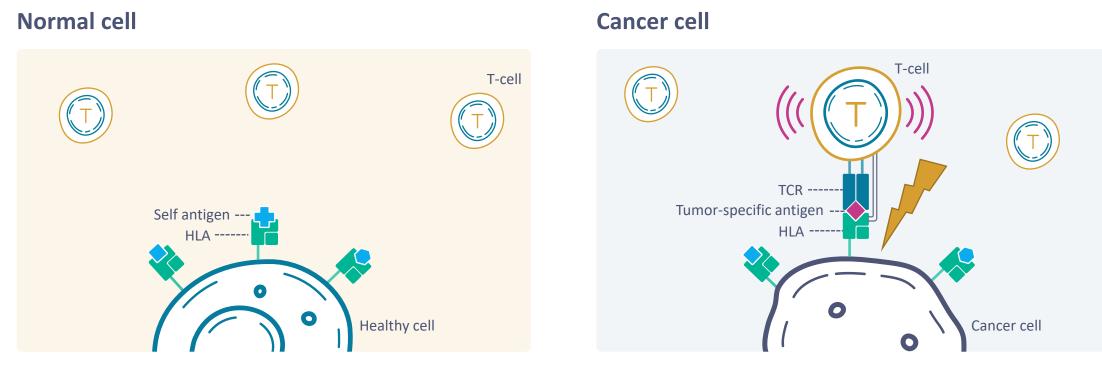
What we have learned from immuno-oncology

Checkpoint therapy (Keytruda[®], Yervoy[®], Opdivo[®])

- Unleashing a patient's T cells can lead to long-term remissions and even cures
- Most patients lack anti-cancer T cells and do not respond

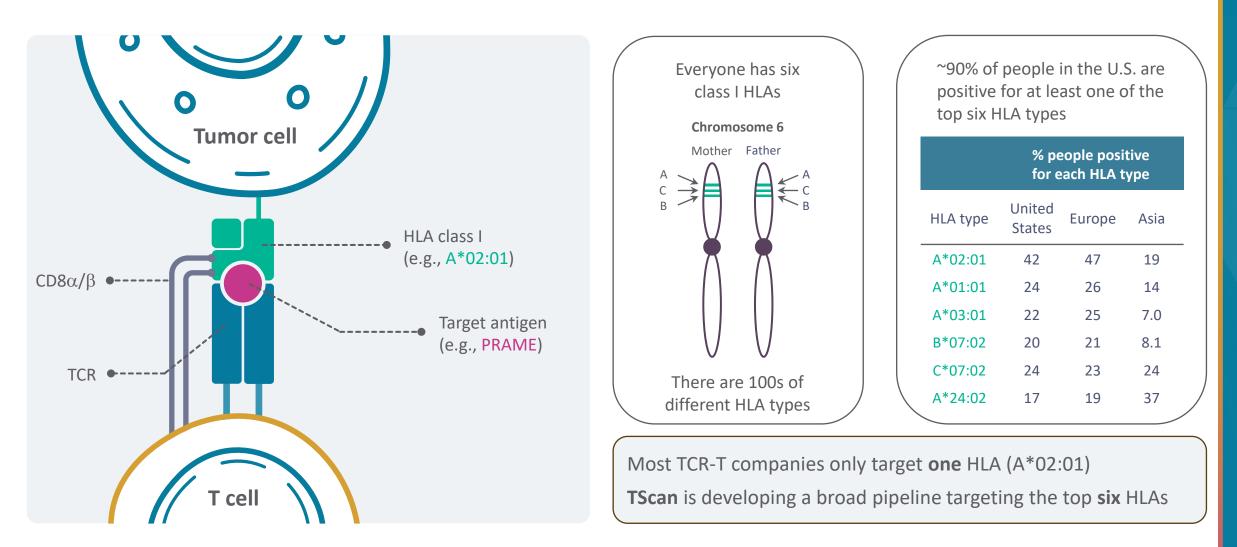

CAR-T therapy (Kymriah[®], Yescarta[®], Breyanzi[®])

- Genetically reprogramming T cells cures patients with certain heme malignancies
- Broader applications of CAR-T, particularly in solid
 tumors, remains challenging


Our proposed solution is TCR-T cell therapy

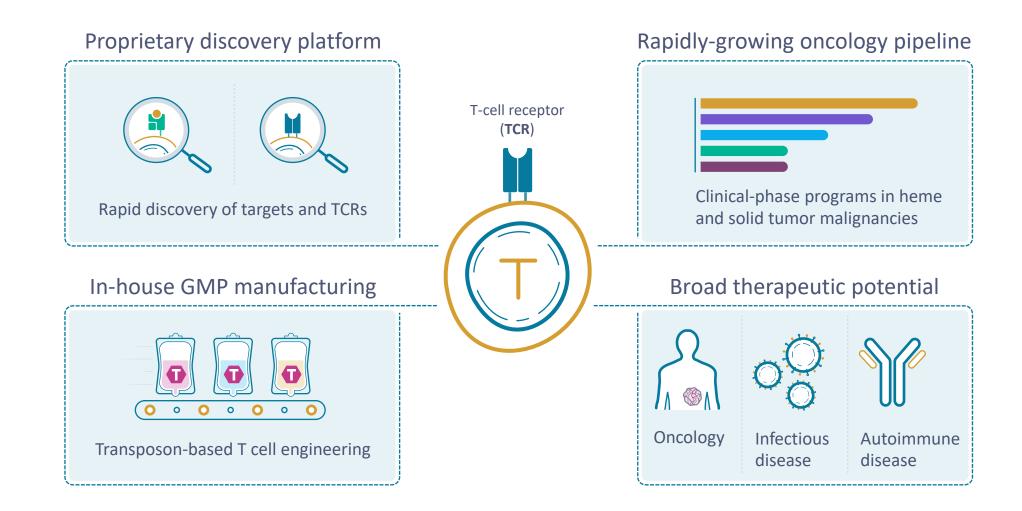
Genetically reprogramming T cells with <u>T-cell receptors</u> leverages the body's natural mechanism for fighting cancer

T-cells search for and kill abnormal cells

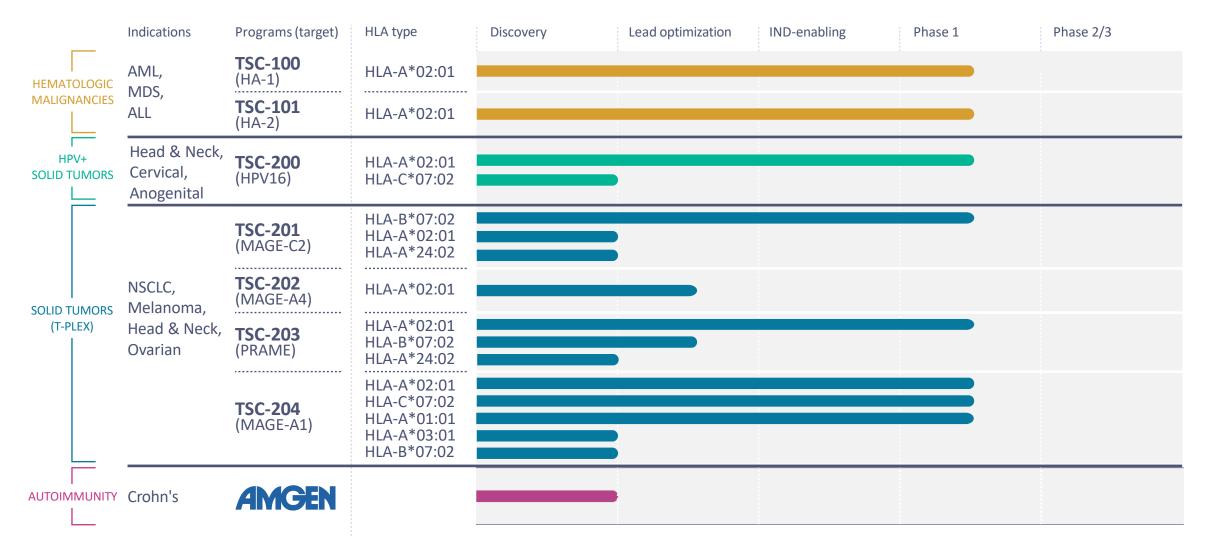


Healthy cells display normal self-antigens that do not activate circulating T-cells

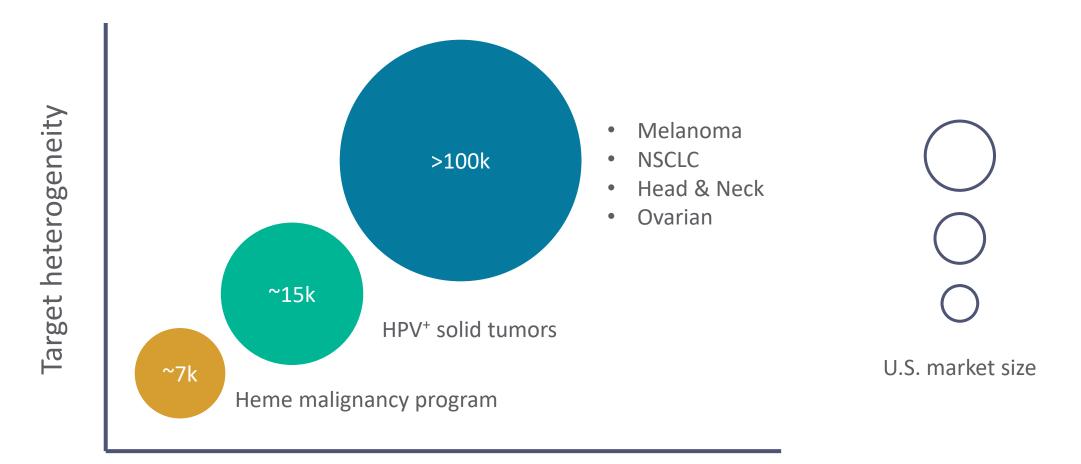
Tumor-specific antigens activate circulating T-cells to kill cancer cells



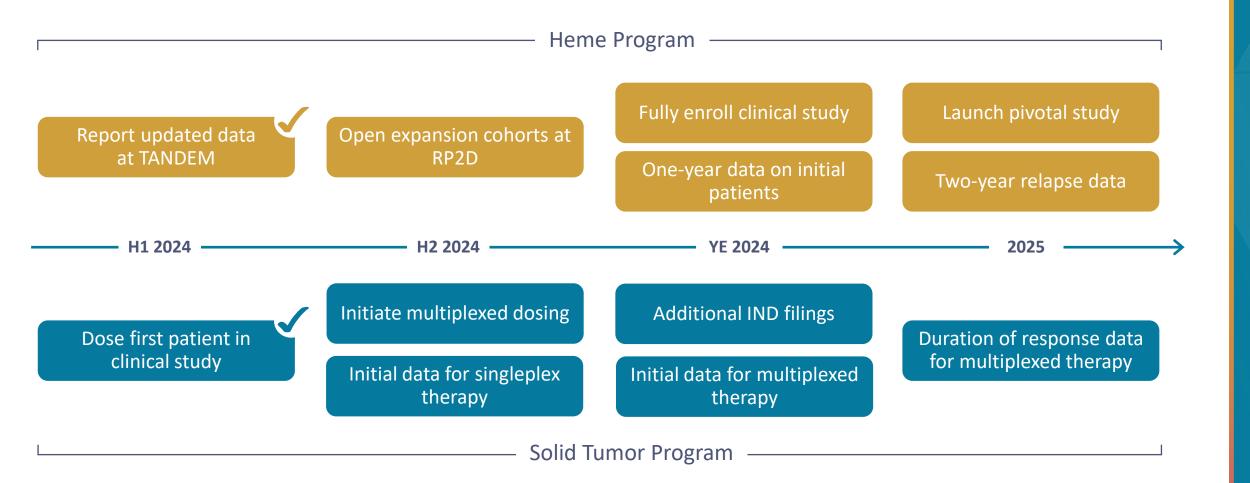
TScan is targeting the most frequent HLAs to address a broad patient population



TScan is a fully integrated, next-generation TCR-T cell therapy company

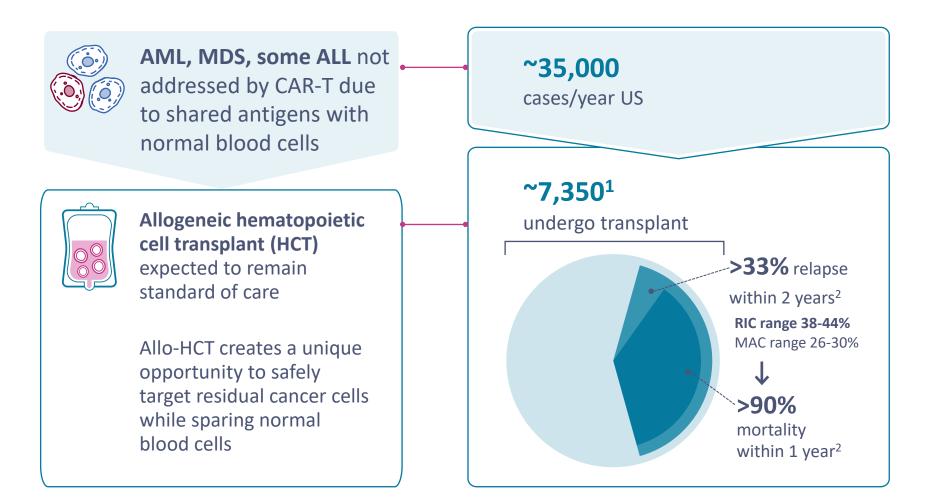


Platform delivers broad proprietary pipeline


TScan programs are designed to sequentially build value

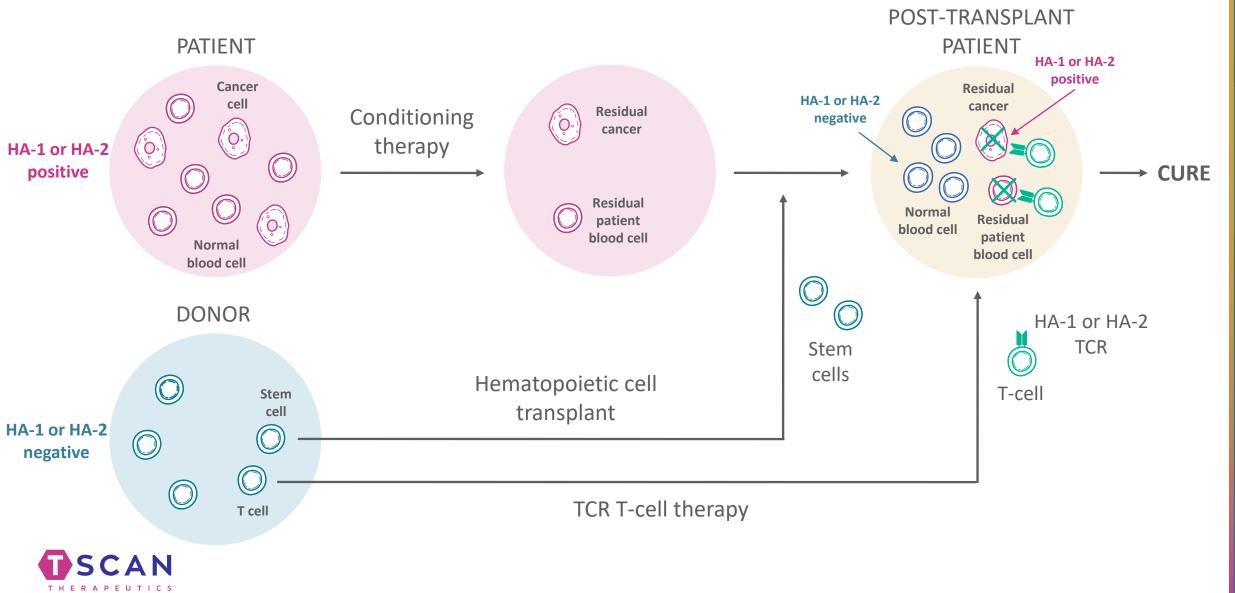
Time to market

Steady value-generating data flow planned across clinical programs



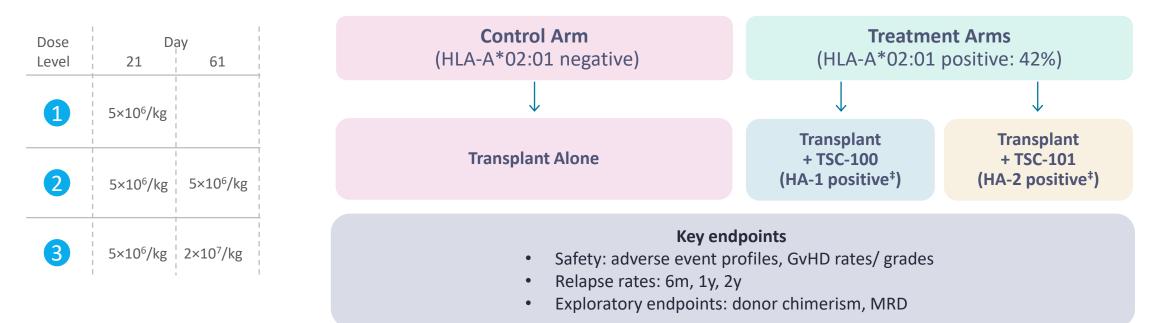
Heme malignancies: targeting residual disease to prevent relapse in patients undergoing allogeneic HCT

Relapse after hematopoietic cell transplant remains an unmet need


Targeting antigens mismatched between patients and donors can potentially prevent relapse after allo-HCT

1. CIBMTR summary statistics 2022, allogeneic transplants for malignant diseases in 2019 before the COVID-19 pandemic

2. CIBMTR analysis of AML, ALL, MDS allogeneic transplants with myeloablative (MAC) or reduced intensity conditioning (RIC) between


2017-2019 with 2-year follow-up; MAC relapse range 26-30%, RIC relapse range 38-44%

TSC-100 and TSC-101 are engineered TCR-T cells designed to eliminate residual recipient cells and prevent relapse following HCT

Multi-arm Phase 1 trial for TSC-100 & TSC-101 has reached highest dose level

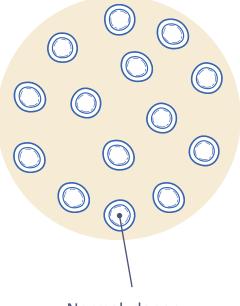
AML, MDS, ALL undergoing haploidentical transplant with reduced intensity conditioning

Expected relapse rates for HCT alone										
6 months	22%									
1 year	33%									
2 years	42%									

CIBMTR analysis of RIC-haplo transplants from 2017-2019

Risk factors well-balanced between control-arm and treatment-arm patients

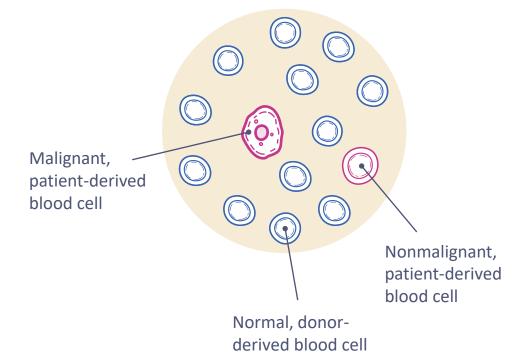
	Control Arm									TSC-100 TSC-101						
Patient ID	Control 1	Control 2	Control 3	Control 4	Control 5	Control 6	Control 7	Control 8	TSC-100 DL1	TSC-100 DL2	TSC-100 DL3	TSC-100 DL3	TSC-101 DL1	TSC-101 DL2- supp	TSC-101 DL2	TSC-101 DL3- supp
Diagnosis	MDS	MDS	MDS	AML	AML	AML	AML	AML	T-ALL	AML	AML	MDS	MDS	AML	B-ALL	B-ALL
Molecular Markers	None Mono / RUNX1 W/11 NPM1 Pending KRAS						ATM <2%	FLT3- ITD	Trisomy 8 IDH2, NRAS, ASXL1	SRSF2 ASXL1 STAG2	Del5q, mTP53	IDH2, SRSF2, ASXL1 CUX1	n/a	n/a		
Pre-HCT MRD	Positive	Negative	Positive	Negative	Positive	Negative	Negative	Positive	Positive	Negative	Positive	Positive	Positive	Positive	Negative	Negative
RIC regimen	Flu/ Cy/ TBI	Flu/ Cy/ TBI	Flu/Mel/ Thio	Flu/ Cy/ TBI	Flu/Mel/T Bl	Flu/Mel/ TBI	Flu/Mel/ TBI	Flu/Cy/ TBI	Flu/ Cy/ TBI	Thio/ Bu/ Flu	Flu/Mel / TBI	Flu/Cy/ TBI	Flu/ Mel/ TBI	Flu/Mel / TBI	Flu/Mel / TBI	Flu/Mel / TBI
Dose Level			l	N/A					DL1	DL2	DL3	DL3	DL1	sDL2‡	DL2	sDL3‡
TCR-T dosing Day	N/A									Day 25 Day 76	Day 34 Day 75	Day 27 Day 69	Day 21	Day 27 Day 82	Day 21 Day 62	Day 27 Day 70
Last Post- HCT Day	Day 528	Day 161*	Day 180*	Day 227	Day 148	Day 133	Day 21*	Day 63	Day 388	Day 351	Day 217	Day 164	Day 421	Day 358	Day 295	Day 190



Donor chimerism serves as an early surrogate of efficacy

Post-transplant Patient

Complete donor chimerism


(low risk of relapse^{1,2})

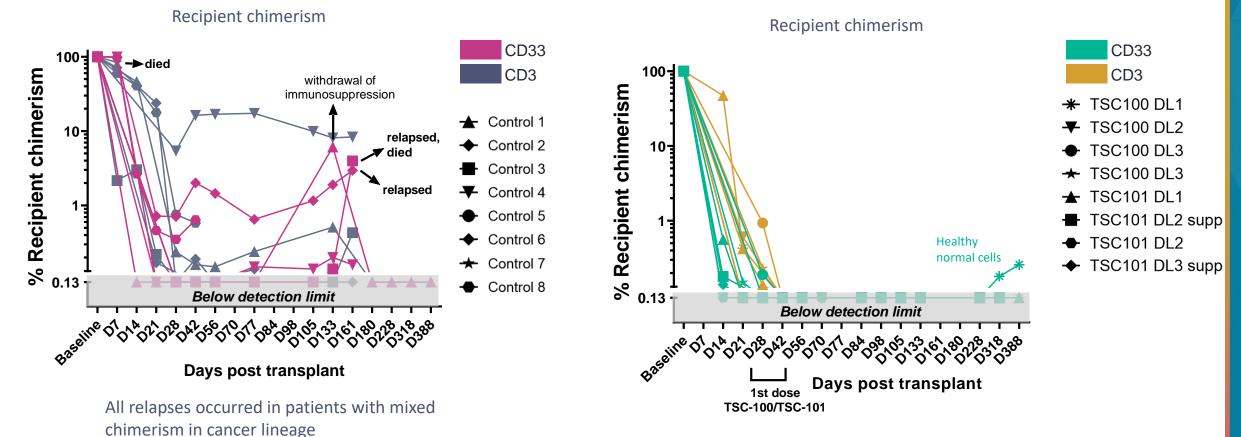
Normal, donorderived blood cell

Mixed donor chimerism

(high risk of relapse^{1,2})

Lindhal, Bone Marrow Transpl, 2022
 Ciurea, Al Malki, Blood Rev, 2023

All 8 patients on the treatment arm remain relapse-free with no detectable cancer

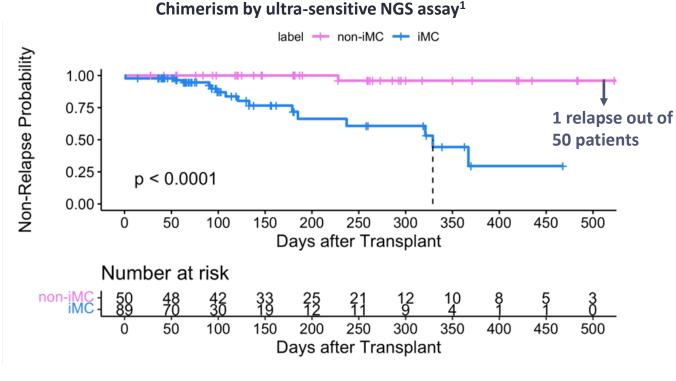

Control-arm patients																	
Day post HCT [‡]	Control	Control	Control	Control 4	Control	Control 6	Control	Control 8	TSC-100 DL 1	TSC-100 DL 2	TSC-100 DL 3	TSC-100 DL 3	TSC-101	TSC-101 DL 2-supp	TSC-101 DL 2	TSC-101 DL 3-supp	
Day 21/28	X	X	X	X	X	X	Deceased Day 21	'X	X	X	X	X	×	X	×	X	
Day 42	\times	\times	\times	\times	\checkmark	\checkmark		\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	♦	TSC-100/101 dosing
Day 56	X	Х	\checkmark	Х	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Mixed donor chimerism
Day 77	\times	X	\checkmark	X	\checkmark	\times_{*}			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Complete donor chimerism
 Day 105	X	\times	\checkmark	\times	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Clinical intervention for increasing mixed chimerism
Day 133	(\mathbf{X})	X	X	X					\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
Day 161	\checkmark	Relapse Day 161	\times	X_{*}					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		* <u>Not detected in</u> <u>cancer cell lineage</u>
Day 228	\checkmark		Relapse Day 180						\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		in most recent measurement
 Day 318	\checkmark		Deceased Day 265						X	\checkmark			\checkmark	\checkmark			1
 Day 388	\checkmark								T	companied TCR-T cell a	l by increase activation	е	\checkmark				1 year

Donor chimerism detected by high-sensitivity next-generation sequencing (NGS) assay (AlloHeme) with limit of detection 0.13% [†] Measurements taken at indicated day post HCT ± 3 days

Data cutoff April 12, 2024

No relapses and complete chimerism in cancer lineage in treatment arms Two relapses, two deaths and mixed chimerism in cancer lineage in control arm

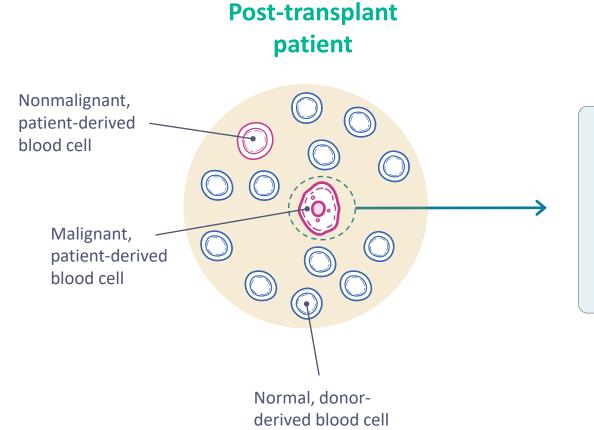
Control arm



Treatment arms

Median post-transplant follow-up in treatment arms: 10.7 months (range 5.5-14 months); Median follow-up in control arm: 5.2 months (range 0.7-18 months)

Early data from ACROBAT trial* show low risk of relapse in patients not showing increasing mixed chimerism


¹ Limit of detection ~0.13% recipient chimerism iMC: ≥0.2% increasing mixed chimerism in CD3⁺, CD33⁺, or whole blood

139 patients with complete NGS and STR chimerism testing, median F/U [Q1,Q3] = 365 [270,484] days

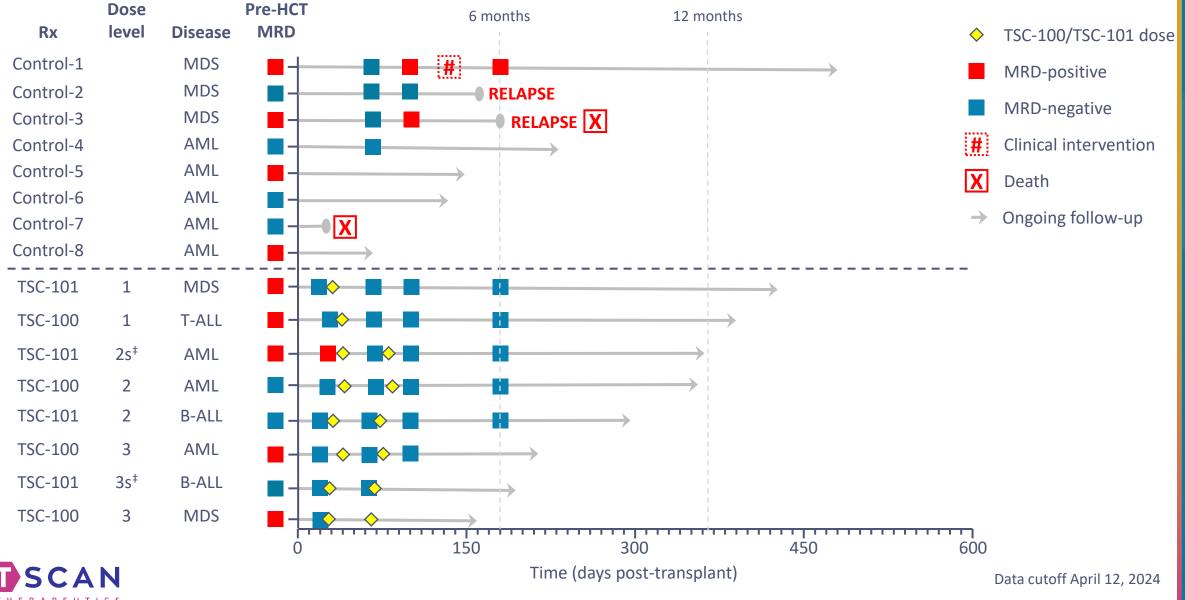
- Early data from the ACROBAT trial suggest a favorable prognosis for patients that rapidly achieve and maintain complete chimerism
- None of the patients treated with TSC-100/TSC-101 show increasing mixed chimerism, suggesting a very low risk of relapse

 NCT04635384, Kothari, TCT 2024 abstract # 555; CareDx sponsored clinical study

Minimal residual disease serves as a supportive surrogate of efficacy

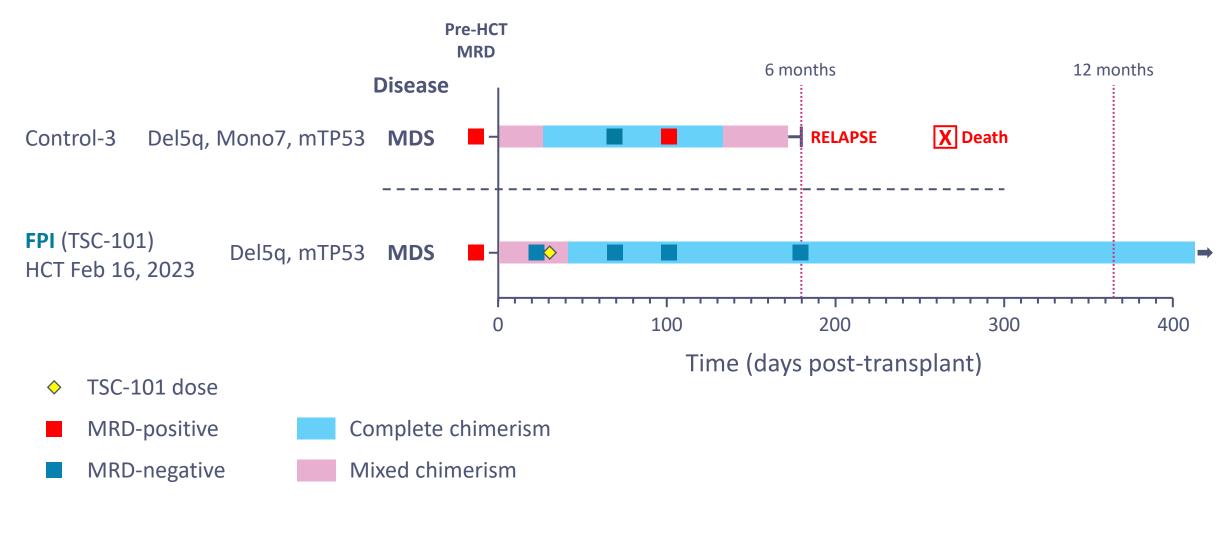
Minimal Residual Disease (MRD)

Next-generation sequencing


- Deep sequencing of leukemiaassociated genes (centrally)
- Sensitivity 0.05-0.1%

MRD+ patients post-transplant have ~90% chance of relapse^{1,2}

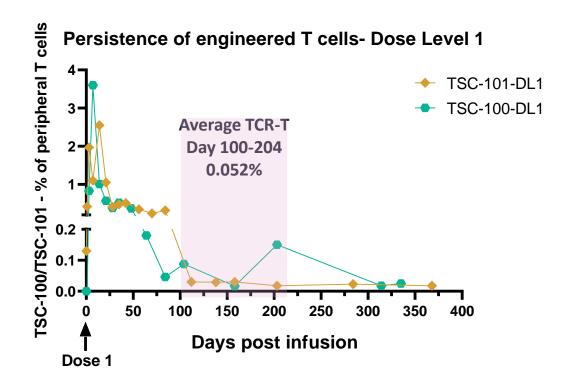
1. Craddock, J Clin Oncol, 2021 2. Loke, ASH, 2021

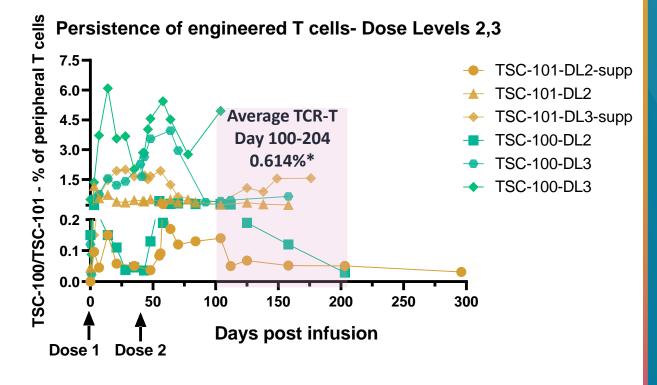


All treated patients to date achieved MRD negativity^{*}

*MRD determined by NGS (lower limit of detection 0.05-0.1%) ‡Dose did not meet target dose criteria in supplemental cohorts

Very different outcomes observed for two patients with TP53-mutated MDS


MRD and chimerism determined by NGS (lower limits of detection 0.1% and 0.13%, respectively)


TSC-100 & TSC-101 persisted in peripheral circulation for over 12 months

- TSC-100 and TSC-101 TCR-T cells detected in all patients at all time points to date
- Repeat dosing resulted in increased levels of circulating TCR-T cells

Single dose cohorts

Repeat dose cohorts

*Average TCR-T Day 100-204 DL3: 1.73%; DL2 and DL-supp: 0.22%

Serious adverse events were similar between treatment and control arms

	Control-arm Patient	Serious Adverse Event	Highest Grade*	Post-transplant Day	TSC Relatedness
	Control 3	Cytokine release syndrome	2	+2	Not Applicable
~	Control 4	Neck pain	3	+53	Not Applicable
	Control 2	Acute graft versus host disease in skin	3	+49	Not Applicable
	Control 2	Acute graft versus host disease in gastrointestinal tract	3	+53	Not Applicable
	Control 2	Pneumonia	3	+56	Not Applicable
	Control 5	RSV Pneumonia	3	+28	Not Applicable
	Control 7	Acute kidney injury, septic shock	5	+7	Not Applicable

*Grading by CTCAE v5.0 or MAGIC consortium grading for GvHD

Same patient

Serious adverse events were similar between treatment and control arms

	Treatment-arm Patient	Serious Adverse Event	Highest Grade*	Post-transplant Day	TSC Relatedness
	TSC-100-DL3	Sepsis, respiratory failure	4	+9	Not applicable (pre-TSC)
	TSC-100-DL2	Pyrexia	1	+136	Not related
	TSC-100-DL3	Pericardial effusion#	4	+77	Not related
	TSC-101-DL1	Acute graft versus host disease in gastrointestinal tract [#] , acute kidney injury	3	+49	Possibly related
Same	TSC-101-DL1	TSC-101-DL1 Adenovirus viremia, Pneumonia, Clostridium difficile infection		+71	Not Related
patient	TSC-101-DL1	Pyrexia	1	+148	Not Related
patient	TSC-101-DL1	Interstitial pneumonitis	2	+182	Not Related
	TSC-101-DL1	Pneumonia	3	+368	Not Related
Ĺ	TSC-101-DL1	Pneumonia, pleural effusion	3	+400	Not Related
Game	TSC-101-sDL2	HHV-6 reactivation	1	+21	Not applicable (pre-TSC)
Same	TSC-101-sDL2	Influenza viremia, pneumonia, pleural effusion	3	+252	Not Related
patient	TSC-101-sDL2	Urinary tract infection	2	+295	Not Related
	TSC-101-sDL3	COVID-19, catheter infection	3	+95	Not Related
	Donor	Acute pulmonary embolism	3	N/A	Not applicable

*Grading by CTCAE v5.0 or MAGIC consortium grading for GvHD

Research testing by flow cytometry or immunohistochemistry for TSC-100/101 markers did not find evidence of involvement

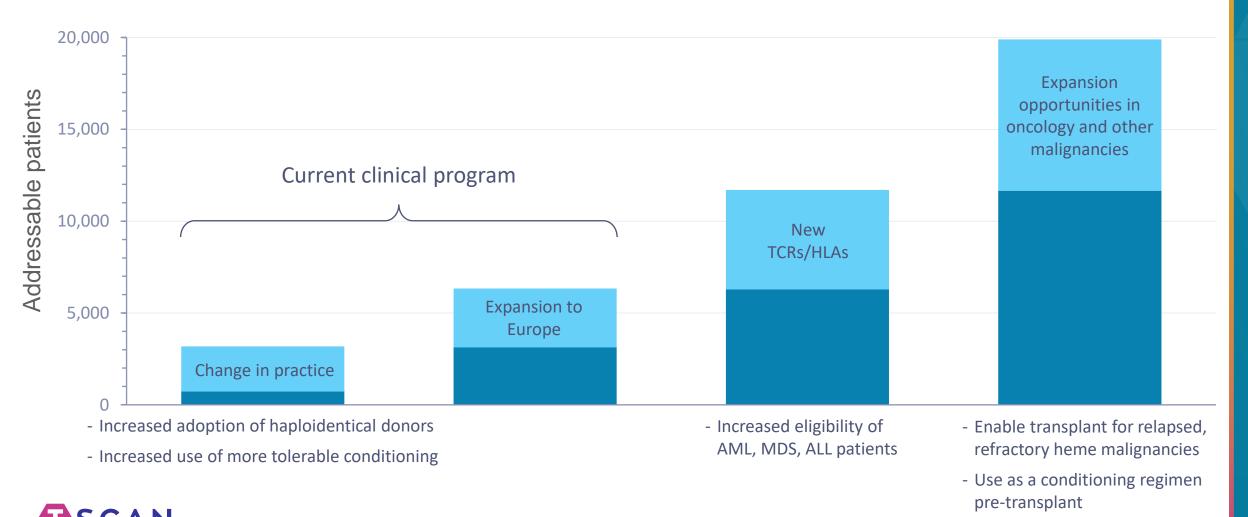
Adverse events of special interest similar between treatment and control arms

All cytokine release syndrome (CRS) events occurred before TSC-100/ TSC-101 treatment

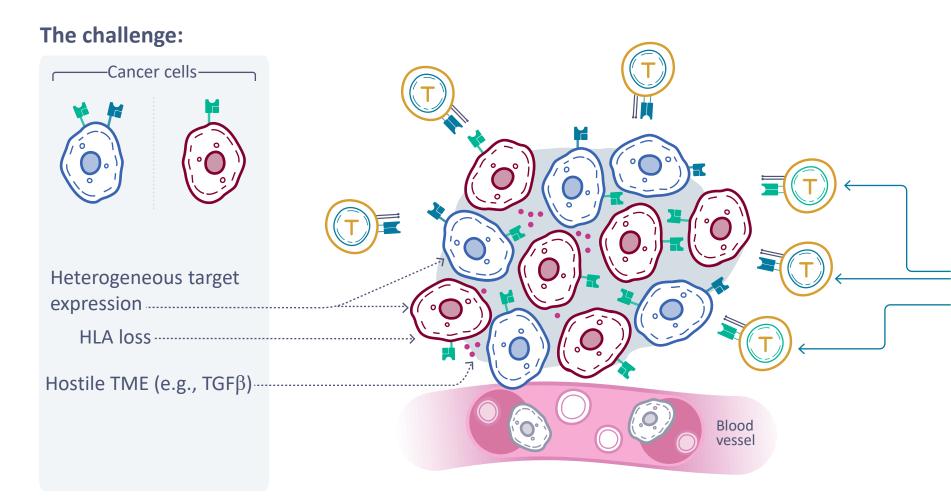
Arm-Dose Level	Grade*	Adverse Event	HCT Day of Onset	Duration	TSC relatedness
TSC-100-DL2	Grade 1	CRS	+3	2 days	Not applicable (pre-TSC)
TSC-100-DL3	Grade 1	CRS	+3	3 days	Not applicable (pre-TSC)
TSC-101- DL2supp	Grade 2	CRS	+1	3 days	Not applicable (pre-TSC)
TSC-101-DL2	Grade 1	CRS	+1	5 days	Not applicable (pre-TSC)
TSC-101-sDL3	Grade 1	CRS	+1	3 days	Not applicable (pre-TSC)
Control 1	Grade 1	CRS	+2	3 days	Not applicable
Control 2	Grade 1	CRS	+3	2 days	Not applicable
Control 3	Grade 2	CRS	+2	2 days	Not applicable
Control 6	Grade 1	CRS	+1	3 days	Not applicable
TSC-100-DL1	Grade 1	Skin GvHD	+48	8 days	Possibly related
TSC-101-DL1	Grade 3	GI GvHD	+49	8 days	Possibly related
TSC-101-DL2supp	Grade 1	Skin GvHD	+43	3 days	Possibly related
TSC-101-DL2	Grade 1	Skin GvHD	+127	7 days	Possibly related
Control 2	Grade 3	GI GvHD	+53	18 days	Not applicable
Control 2	Grade 3	Skin GvHD	+49	12 days	Not applicable
Control 1	Grade 1	Skin GvHD	+180	Pending	Not applicable
Control 3	Grade 1	Skin GvHD	+131	>50 days (off study)	Not applicable

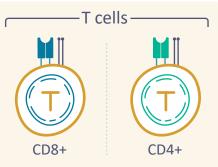
*MAGIC consortium grading for graft-versus host disease (GvHD); ASTCT grading for cytokine release syndrome (CRS)

26


Significant increase in enrollment of heme trial post-TANDEM

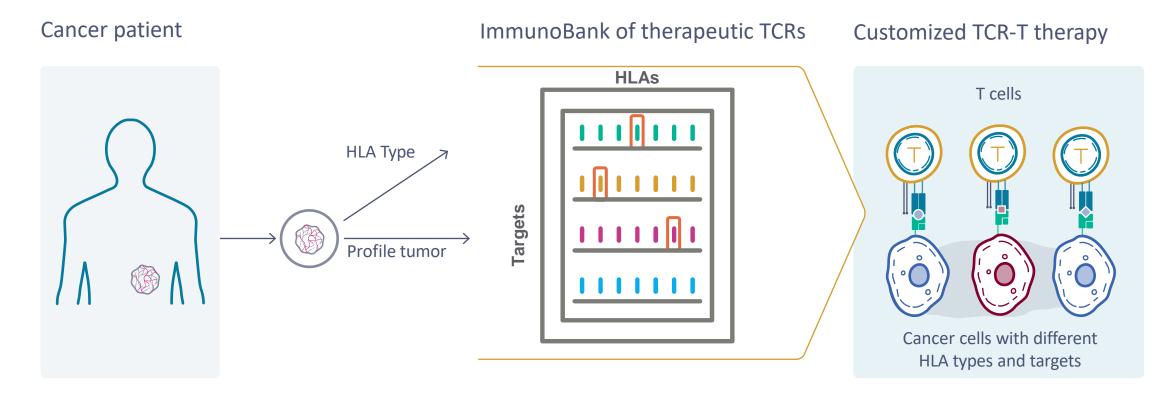
	SUN	MON	TUE	WED	THU	FRI	SAT
	25	26	27	28	29	1	2
	3	4	5	6	7	8	9
Feb/Mar	10	11	12	13	14	15	16
	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	31						
	SUN	MON	TUE	WED	THU	FRI	SAT
		1	2	3	4	5	6
a	7	8	9	10	11	12	13
April/May	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	1	2	3	4


Current program addresses sizable patient population, with several global and lifecycle management opportunities


Solid Tumors: Developing multiplex TCR-T to overcome tumor heterogeneity

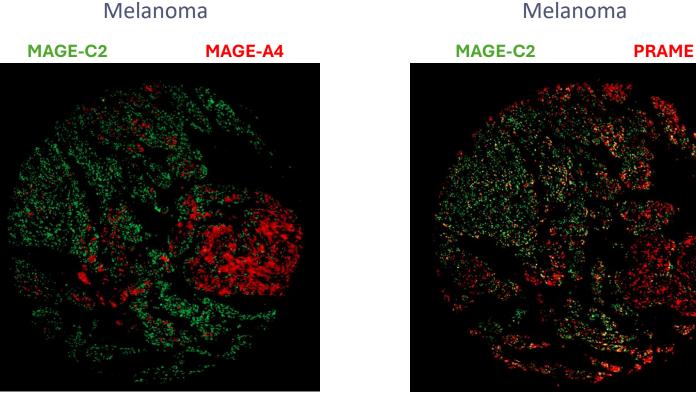
TScan is learning from nature to understand, exploit, and enhance how T cells recognize and fight cancer

Nature's solution:

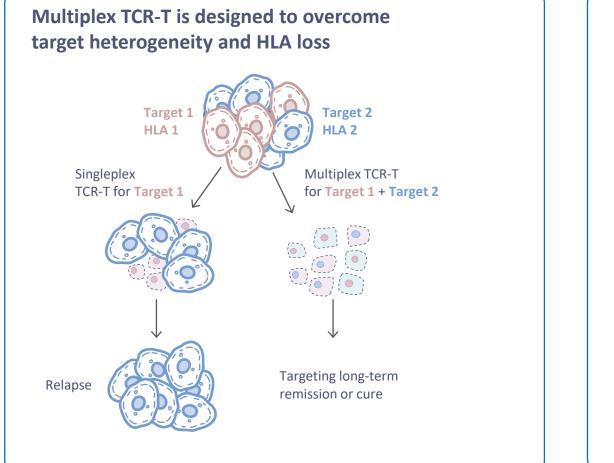


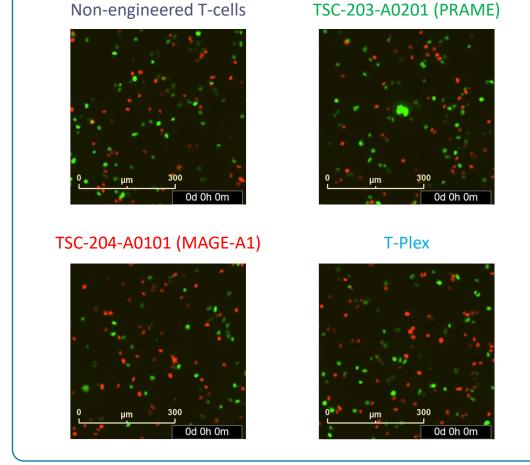
Diverse repertoire of CD4+ and CD8+ T cells

What do T cells naturally recognize and how can we use that information to design better therapeutics?


TScan is building an ImmunoBank of TCRs to enable enhanced, multiplex TCR-T cell therapy

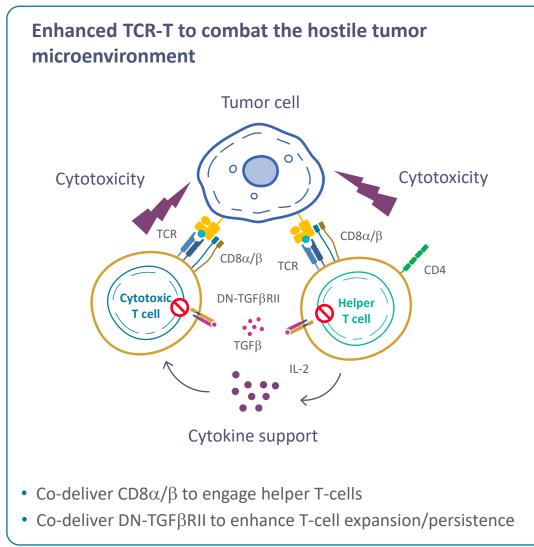
- Determine target and HLA expression in patient tumor
- Manufacture and administer customized, multiplex TCR-T therapy

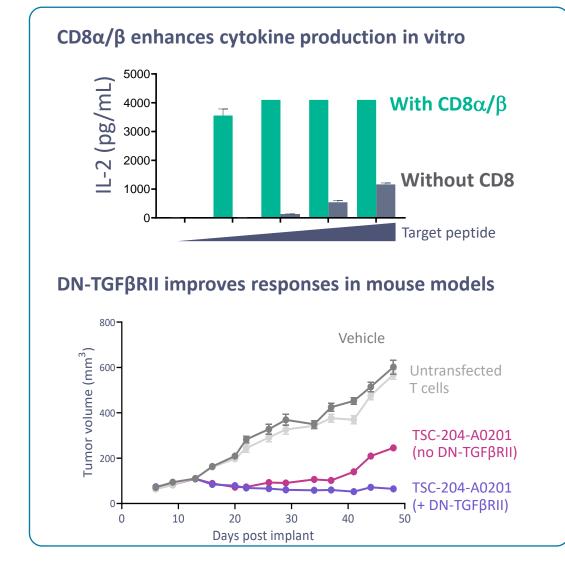

Target heterogeneity in solid tumors limits the efficacy of singleplex therapies



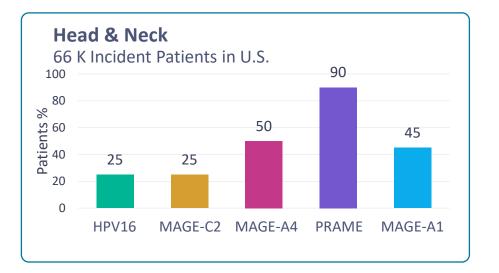
- Treatment with a TCR-T against one target does not address the full tumor •
- TCR-T therapy against multiple targets may be required improve efficacy and durability

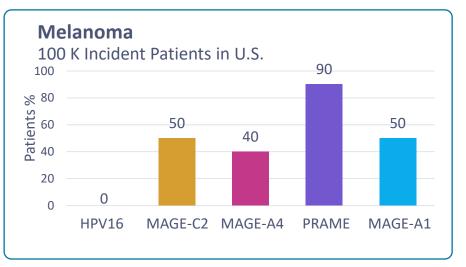
Multiplex TCR-T may address the problem of heterogeneity in solid tumors

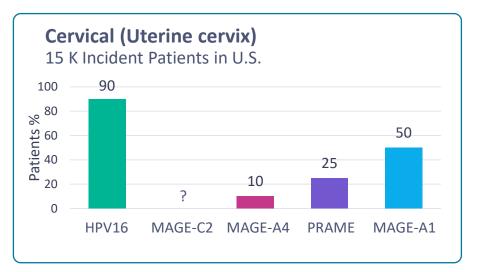


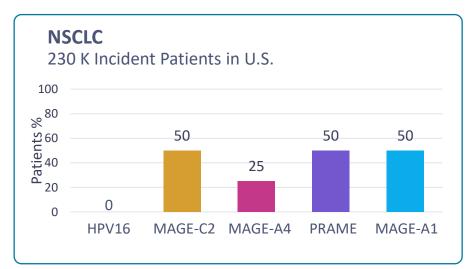


- Treat patients with multiple TCR-Ts
- Prospectively select patients for target and HLA expression

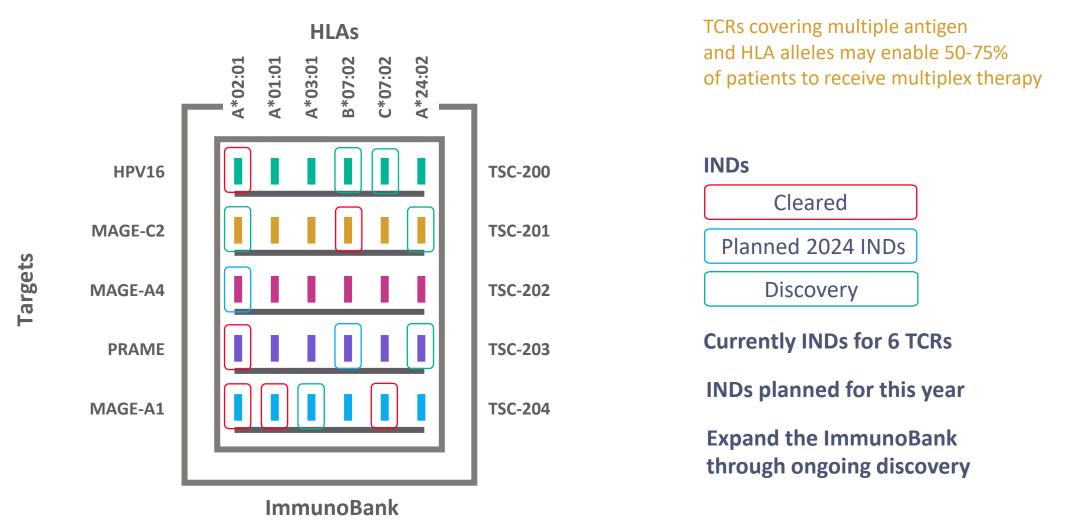

Green cells: SKMEL5 (PRAME-positive) Red cells: A101D (MAGE-A1-positive)


TScan's enhancements address the hostile tumor microenvironment

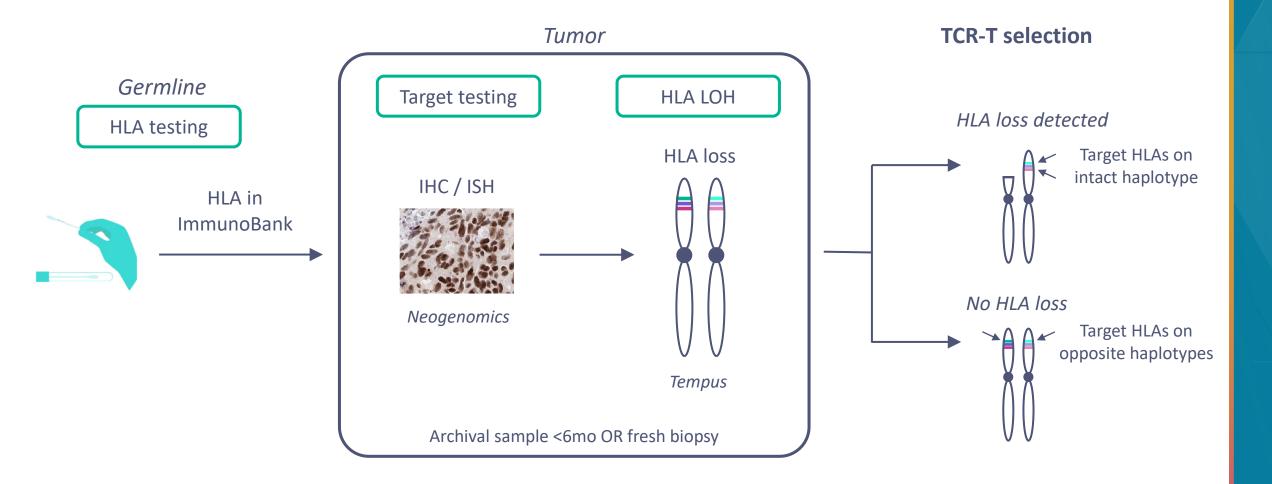




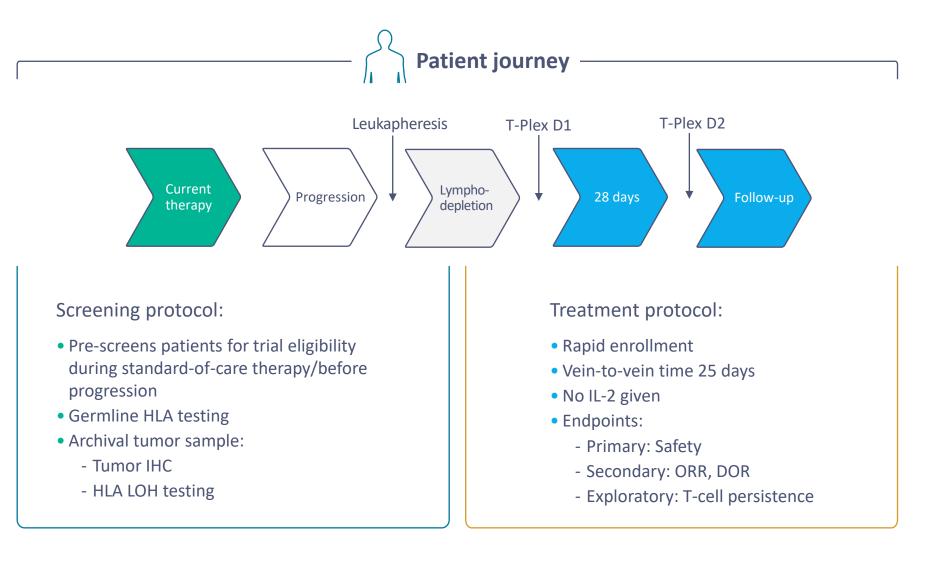
Programs address targets frequently co-expressed in prevalent solid tumors



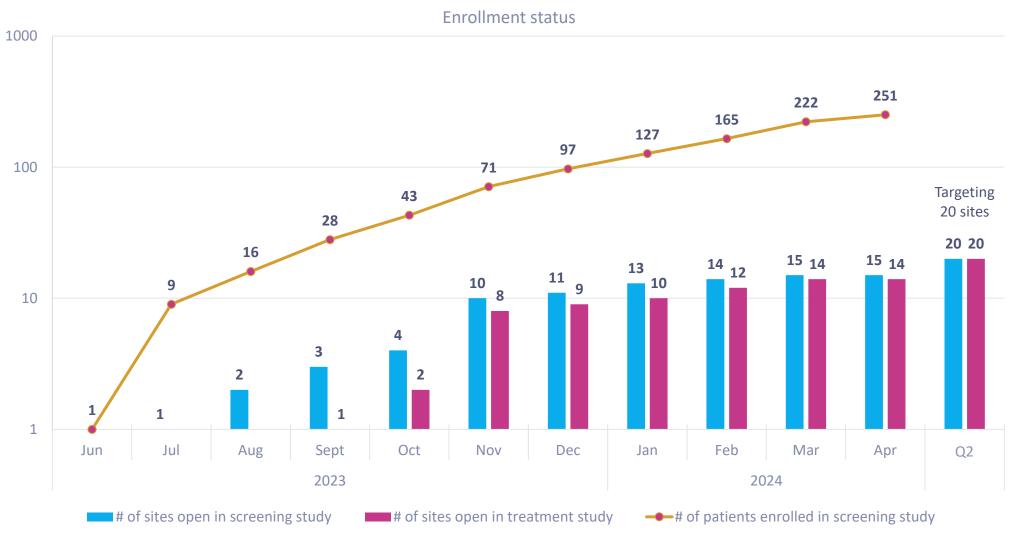
TScan is rapidly filling the ImmunoBank to enable multiplexed TCR-T therapy in solid tumors



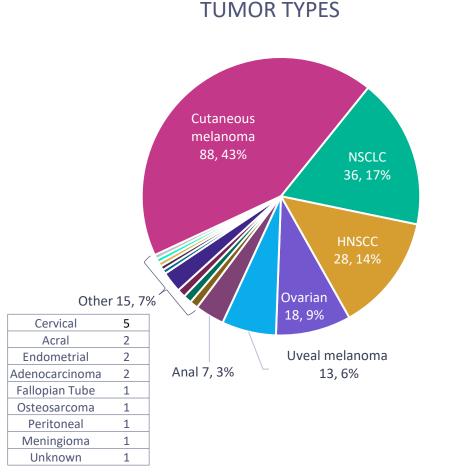
Dose escalation scheme provides a rapid path to multiplex TCR-T in Phase 1



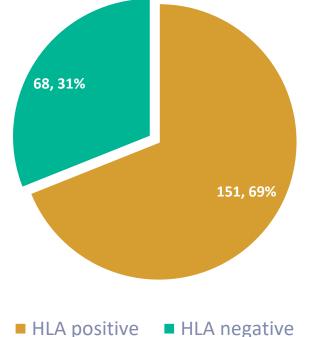
Prospectively selecting for target and HLA expression maximizes chance of success



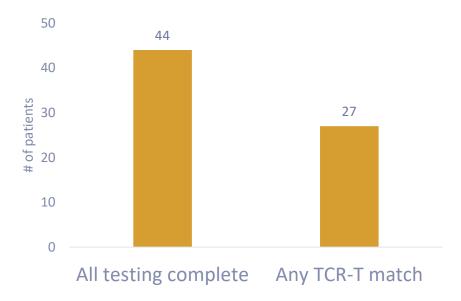
Screening protocol pre-identifies patients for treatment



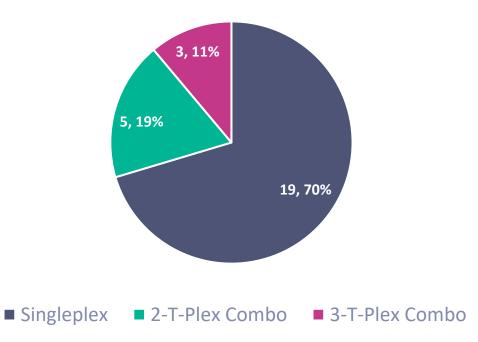
Investigators are highly motivated and have screened over 250 patients to date



Broad array of tumor types with ~70% matching to an HLA in the ImmunoBank



~70% of patients have at least one HLA match to the ImmunoBank



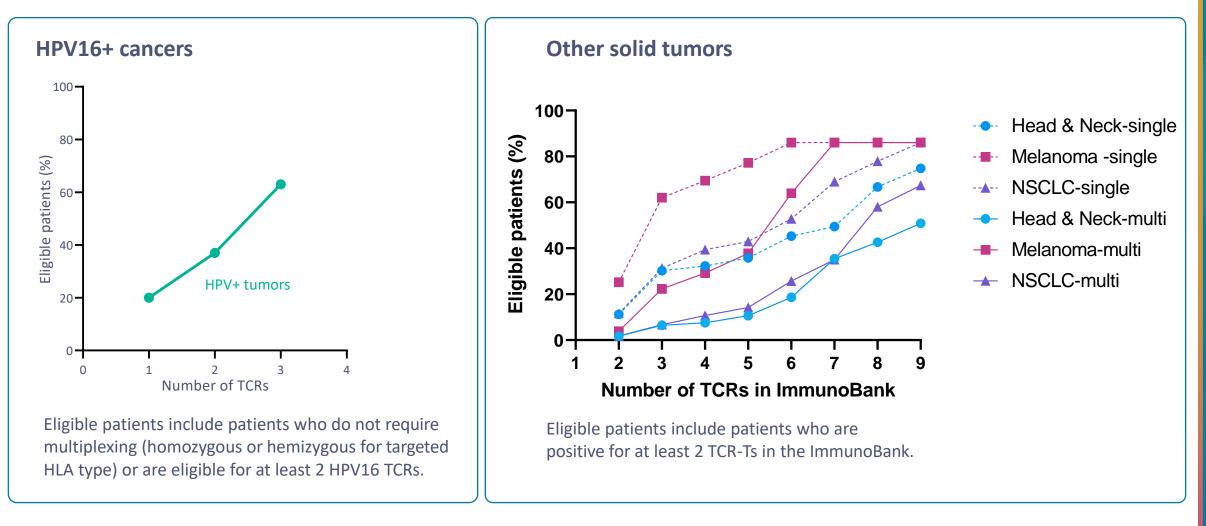
High percentage of patients have a TCR match for singleplex therapy and many would be eligible for T-Plex

~60% of patients with all testing completed have at least one TCR in ImmunoBank

~30% of patients with TCR-T would qualify for T-Plex

Patients identified across all cohorts and into DL2 and DL3 in some cohorts

Dose Level	MAGE-A1 A*02:01	MAGE-A1 C*07:02	HPV-16 A*02:01	PRAME A*02:01	MAGE-A1 A*0101	MAGE-C2 B*0702
DL1	 Melanoma (Yale) <u>Apheresis 4/30</u> First dose early June Also PRAME positive 	 Melanoma (Alleghany) <u>Currently in</u> <u>manufacturing</u> First dose early May 	 Head & Neck (HonorHealth) <u>Currently in</u> <u>manufacturing</u> First dose early May 	 Melanoma (Orlando) <u>Manufacturing</u> <u>complete</u> First dose early May 	 Head & Neck (Alleghany) <u>Apheresis 5/7</u> First dose mid June 	 Melanoma (HonorHealth) Pending clinical status <u>Targeting apheresis in</u> <u>May</u>
DL2			 Head & Neck (Norton) <u>Targeting apheresis</u> <u>in May</u> 	 Melanoma (Yale) <u>Apheresis 4/23</u> 		
DL3			 Anal (Columbia) Pending clinical status Also PRAME and MAGE-A1 positive 	 NSCLC (Alleghany) Apheresis 5/1 		


Enrollment proceeding rapidly across heme and solid tumor programs

	SUN	MON	TUE	WED	THU	FRI	SAT
	25	26	27	28	29	1	2
	3	4	5	6	7	8	9
Feb/Mar	10	11	12	13	14	15	16
	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	31						
	SUN	MON	TUE	WED	THU	FRI	SAT
		1	2	3	4	5	6
	7	8	9	10	11	12	13
April/May	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	1	2	3	4
	5	6	7	8	9	10	11

Patient eligibility expected to increase rapidly as ImmunoBank grows

TScan highlights

Transformative platform enables rapid discovery of TCRs and targets for engineered T cell therapy

Recent collaboration highlights applicability outside oncology

In-house GMP manufacturing using non-viral vectors

Hematologic malignancies program to prevent relapse with HCT

Eight patients treated to date are relapse-free with no detectable cancer

No DLTs observed to date

TSC-100 and TSC-101 progressed to third and final dose level

Solid tumor program to deliver enhanced multiplex TCR-T

INDs cleared for six TCR-Ts with regulatory path to multiplexing

Patients identified and scheduled for all six TCR-Ts

First three patients to be dosed in early May 2024

Q1 2024: \$162.8 M

Existing cash resources along with \$161.4 M net proceeds from public offering funds Company into Q4 2026

THANK YOU

THERAPEUTICS