TScan Therapeutics Tandem Meeting: Promising Phase 1 Clinical Results for the Heme Program Monday, February 26, 2024

THERAPEUTICS

Disclaimers and forward-looking statements

This presentation and the accompanying discussion contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, express or implied statements regarding the Company's plans, progress, and timing relating to the Company's hematologic malignancies program, including the potential implications of initial data from a large prospective clinical trial, presentation of additional data, and potential indicators of treatment success, the Company's plans, process, and timing relating to the Company's solid tumor programs, the Company's current and future research and development plans or expectations, the structure, timing and success of the Company's planned preclinical development, submission of INDs, and clinical trials, the potential benefits of any of the Company's proprietary platforms, multiplexing, or current or future product candidates in treating patients, and the Company's goals and strategy. TScan intends such forward-looking statements to be covered by the safe harbor provisions for forward-looking statements contained in Section 21E of the Securities Exchange Act of 1934 and the Private Securities Litigation Reform Act of 1995. In some cases, you can identify forward-looking statements by terms such as, but not limited to, "may," "might," "will," "objective," "intend," "should," "could," "can," "would," "expect," "believe," "anticipate," "project," "target," "design," "estimate," "predict," "potential," "plan," "on track," or similar expressions or the negative of those terms. Such forward-looking statements are based upon current expectations that involve risks, changes in circumstances, assumptions, and uncertainties. The express or implied forward-looking statements included in this presentation are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation: the beneficial characteristics, safety, efficacy, therapeutic effects and potential advantages of TScan's TCR-T therapy candidates; TScan's expectations regarding its preclinical studies being predictive of clinical trial results; the timing of the initiation, progress and expected results of TScan's preclinical studies, clinical trials and its research and development programs;

TScan's plans relating to developing and commercializing its TCR-T therapy candidates, if approved, including sales strategy; estimates of the size of the addressable market for TScan's TCR-T therapy candidates; TScan's manufacturing capabilities and the scalable nature of its manufacturing process; TScan's estimates regarding expenses, future milestone payments and revenue, capital requirements and needs for additional financing; TScan's expectations regarding competition; TScan's anticipated growth strategies; TScan's ability to attract or retain key personnel; TScan's ability to establish and maintain development partnerships and collaborations; TScan's expectations regarding federal, state and foreign regulatory requirements; TScan's ability to obtain and maintain intellectual property protection for its proprietary platform technology and our product candidates; the sufficiency of TScan's existing capital resources to fund its future operating expenses and capital expenditure requirements and execute on upcoming anticipated milestones into 2026; and the effect of the COVID-19 pandemic, including mitigation efforts and political, economic, legal and social effects, on any of the foregoing or other aspects of TScan's business or operations; and other factors that are described in the "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations" sections of TScan's most recent Annual Report on Form 10-K and any other filings that TScan has made or may make with the SEC in the future.

Any forward-looking statements contained in this presentation represent TScan's views only as of the date hereof and should not be relied upon as representing its views as of any subsequent date. Except as required by law, TScan explicitly disclaims any obligation to update any forward-looking statements.

Presenters

Monzr M. Al Malki, M.D.

- City of Hope
- Associate Professor in the Department of Hematology & Hematopoietic Cell Transplantation
- Director, Unrelated Donor BMT Program and Haploidentical Transplant Program

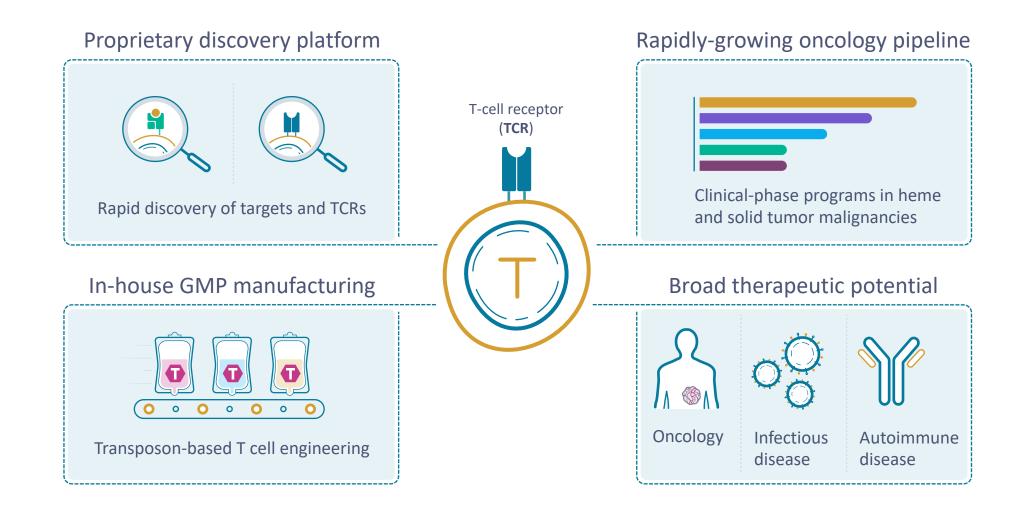
Dr. Al Malki is the lead PI for the current study

Ran Reshef, M.D., M.Sc.

- Columbia University Irving Medical Center
- Professor of Medicine and Director of the Cellular Immunotherapy Program

Dr. Resehf is a PI for the current study

Gavin MacBeath, Ph.D. Chief Executive Officer

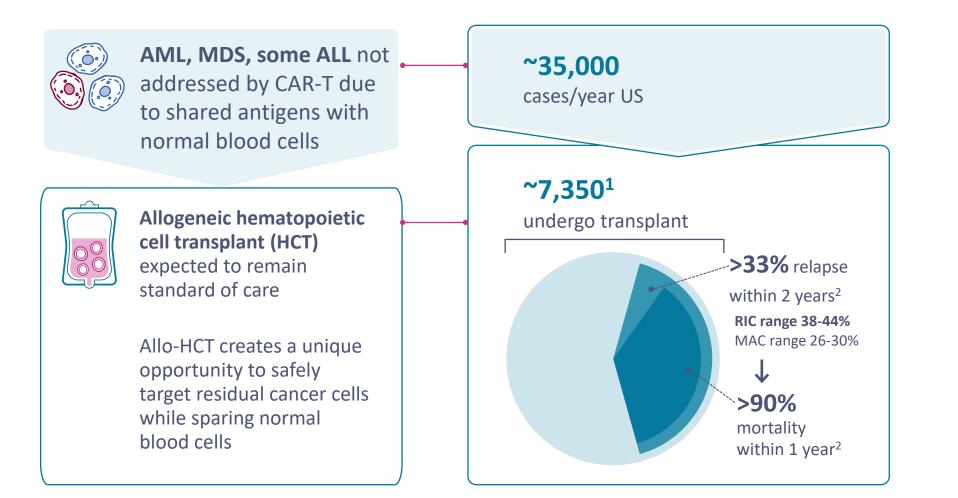


Debora Barton, M.D. Chief Medical Officer

Shrikanta Chattopadhyay, M.D. SVP, Head of Translational Medicine

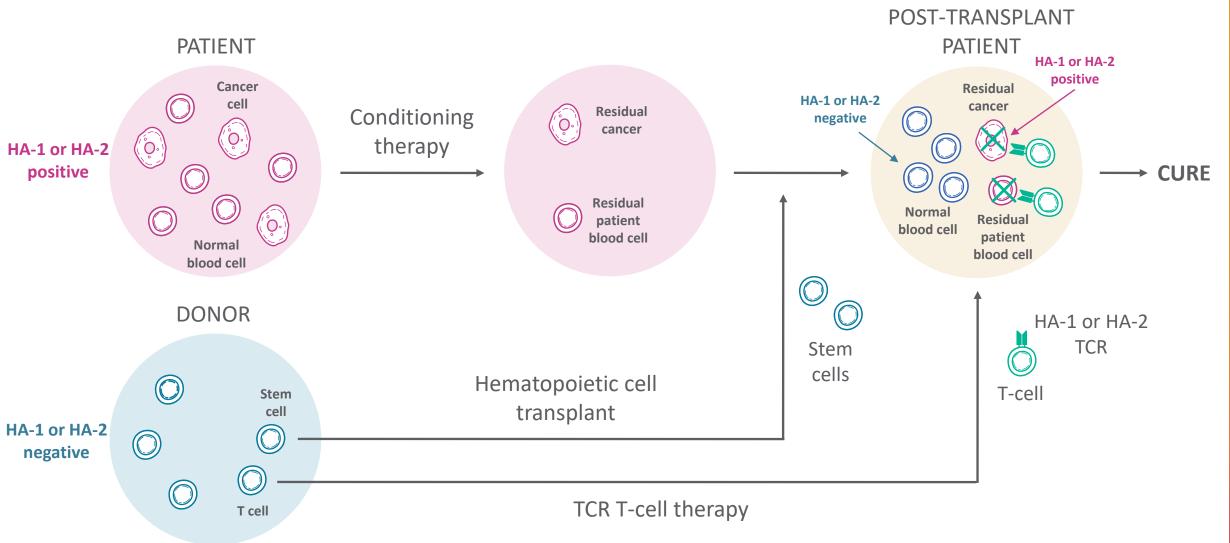
TScan is a fully integrated, next-generation TCR-T cell therapy company

Platform delivers broad proprietary pipeline


	Indications	Programs (target)	HLA type	Discovery	Lead optimization	IND-enabling	Phase 1	Phase 2/3
HEMATOLOGIC	AML, MDS,	TSC-100 (HA-1)	HLA-A*02:01					
	ALL	TSC-101 (HA-2)	HLA-A*02:01					
		TSC-200 (HPV16)	HLA-A*02:01 HLA-C*07:02					
	Head & Neck, Cervical, NSCLC, Melanoma, Ovarian	TSC-201 (MAGE-C2)	HLA-B*07:02 HLA-A*02:01 HLA-A*24:02					
SOLID		TSC-202 (MAGE-A4)	HLA-A*02:01					
TUMORS		TSC-203 (PRAME)	HLA-A*02:01 HLA-B*07:02 HLA-A*24:02					
		TSC-204 (MAGE-A1)	HLA-A*02:01 HLA-C*07:02 HLA-A*01:01 HLA-A*03:01 HLA-B*07:02					
		T-Plex	Multiple					
	Crohn's	AMGEN						

Heme malignancies: TCR-T candidates designed to treat residual disease and prevent relapse in patients undergoing allogeneic HCT

Relapse after hematopoietic cell transplant remains an unmet need


Targeting antigens mismatched between patients and donors can potentially prevent relapse after allo-HCT

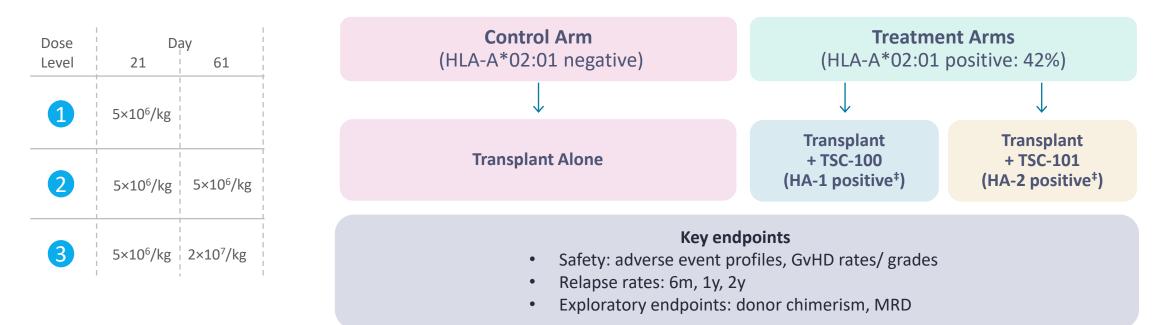
1. CIBMTR summary statistics 2022, allogeneic transplants for malignant diseases in 2019 before the COVID-19 pandemic

2. CIBMTR analysis of AML, ALL, MDS allogeneic transplants with myeloablative (MAC) or reduced intensity conditioning (RIC) between 2017-2019 with 2-year follow-up; MAC relapse range 26-30%, RIC relapse range 38-44%

TSC-100 and TSC-101 are engineered TCR-T cells designed to eliminate residual recipient cells and prevent relapse following HCT

Highlights of data presented at the 2024 Tandem meetings of ASTCT and CIBMTR

- TSC-100 and TSC-101 were generally well-tolerated, with no DLTs and <u>no significant differences in</u> <u>safety</u> between treatment and control arms observed to date^{*}
- Treatment arms (8 patients) showed <u>complete donor chimerism</u> and <u>no evidence of residual disease</u> at every reading starting 3 weeks after their first dose, associated with favorable prognosis
 - All eight patients had <u>no evidence of relapse</u> after TSC-100/ TSC-101 treatment, with five patients on study for >6 months and a TP53 mutated MDS patient with >1 year follow-up
- Both TSC-100 and TSC-101 reached dose level 3 and continue to enroll at the anticipated recommended phase 2 dose
- Four out of six control-arm patients showed <u>increased mixed donor chimerism</u>, and/or <u>minimal</u> <u>residual disease</u>, associated with unfavorable prognosis
 - <u>2 patients relapsed</u> and one other required termination of immune suppression due to worsening chimerism, all before day 180
 - 1 TP53 mutated MDS patient died following relapse


TSC-100 and TSC-101, TCR-T Cell Therapies That Target Residual Recipient Cells after Reduced Intensity Conditioning Transplantation, Induce Complete Donor Chimerism with Favorable Prognosis: Early Results of a Phase 1 Trial

Monzr M. Al Malki, MD¹, Alla Keyzner MD², Hyung C. Suh MD³, Uday R. Popat, MD⁴, Nishant Dwivedi, MD, PhD⁵, Ashish S Kothari, MD, MS⁵, Erica Buonomo, PhD⁶, Yun Wang, PhD⁶, Nina Abelowitz, NP⁶, Jim Murray⁶, Gavin MacBeath, PhD⁶, Debora Barton, MD⁶, Shrikanta Chattopadhyay, MD⁶ and Ran Reshef, MD⁷

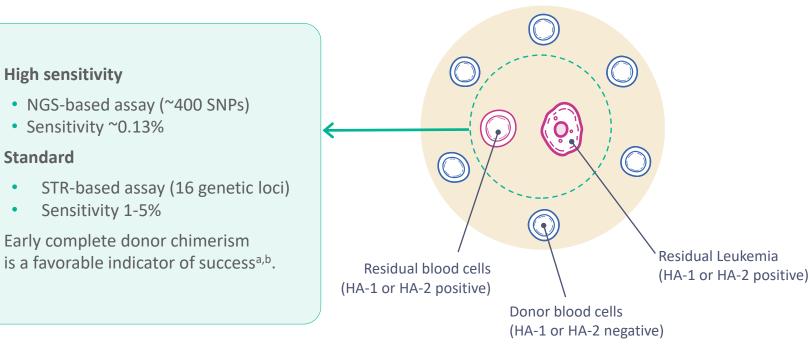
(1)Hematology and HCT, City of Hope, Duarte, CA, (2)Division of Hematology & Medical Oncology, Cellular Therapy and Bone Marrow Transplant, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, (3)John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, (4)Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, (5)Clinical Development, CareDx, Brisbane, CA, (6)TScan Therapeutics, Waltham, MA, (7) Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY

Multi-arm Phase 1 trial for TSC-100 & TSC-101 has reached highest dose level

AML, MDS, ALL undergoing haploidentical donor transplant with reduced intensity conditioning

Expected relapse rates for HCT alone							
6 months	22%						
1 year	33%						
2 years	42%						

CIBMTR analysis of RIC-haplo transplants from 2017-2019


Patient risk factors well-balanced between 6 control and 8 treatment arm patients

	Control Arm						TSC-100				TSC-101			
Patient ID	Control 1	Control 2	Control 3	Control 4	Control 5	Control 6	TSC-100 DL1	TSC-100 DL2	TSC-100 DL3	TSC-100 DL3	TSC-101 DL1	TSC-101 DL2-supp	TSC-101 DL2	TSC-101 DL3-supp
Diagnosis	MDS	MDS	MDS	AML	AML	AML	T-ALL	AML	AML	MDS	MDS	AML	B-ALL	B-ALL
Molecular Markers	Trisomy 8, SRSF2 ASXL1	None	<mark>Del5q</mark> Mono 7 <mark>mTP53</mark>	Mono 7, RUNX1, EZH2	SETB1, WT1, DNMT3A	<mark>FLT3-ITD</mark> NPM1 WT1	ATM <2%	FLT3-ITD	Trisomy 8 IDH2, NRAS, ASXL1	SRSF2 ASXL1 STAG2	Del5q, mTP53	IDH2, SRSF2, ASXL1 CUX1	n/a	n/a
Pre-HCT MRD	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Positive	Positive	Positive	Negative	Negative
RIC regimen	Flu/ Cy/ TBI	Flu/ Cy/ TBI	Flu/Mel/ Thio	Flu/ Cy/ TBI	Flu/Mel/ TBI	Flu/ Mel/ TBI	Flu/ Cy/ TBI	Thio/ Bu/ Flu	Flu/Mel/ TBI	Flu/Cy/ TBI	Flu/ Mel/ TBI	Flu/Mel/ TBI	Flu/Mel/ TBI	Flu/Mel/ TBI
Dose Level	N/A					DL1	DL2	DL3	DL3	DL1	sDL2 [‡]	DL2	sDL3 [‡]	
TCR-T treatment day	N/A						Day 29	Day 25 Day 76	Day 34 Day 75	Day 27 Day 69	Day 21	Day 27 Day 82	Day 21 Day 62	Day 27 Day 70

Donor chimerism serves as surrogate of efficacy

Donor Chimerism

Post-transplant Patient

a. Lindhal, Bone Marrow Transpl, 2022 b. Ciurea, Al Malki, Blood Rev, 2023

٠

•

Complete donor chimerism achieved and maintained in 8/8 (100%) treated patients

Т

Control arm patients								Treat	tment a	irm pat	ients				
Day post HCT*	Control 1	Control 2	Control 3	Control 4	Control 5	Control 6	TSC-100 DL 1	TSC-100 DL 2	TSC-100 DL 3	TSC-100 DL 3	TSC-101	TSC-101 DL 2-supp	TSC-101 DL 2	TSC-101 DL 3-supp	
Day 21/28	\times	\times	\times	\times	\times	\times	×	×	×	×	×	×	×	X	
Day 42	\times	\times	\times	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Day 56	\times	\times	\checkmark	\times		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Day 77	\times	\times	\checkmark	\times			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\diamond
Day 105	×	\times	\checkmark	\times			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	X
Day 133	(\mathbf{X})	\times	\times	\times			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Day 161	\checkmark	Relapse Day 161	\times				\checkmark	\checkmark			\checkmark	\checkmark			\bigcirc
Day 228	\checkmark		Relapse Day 180				\checkmark	\checkmark			\checkmark	\checkmark			
Day 318	\checkmark		Deceased Day 265								\checkmark				

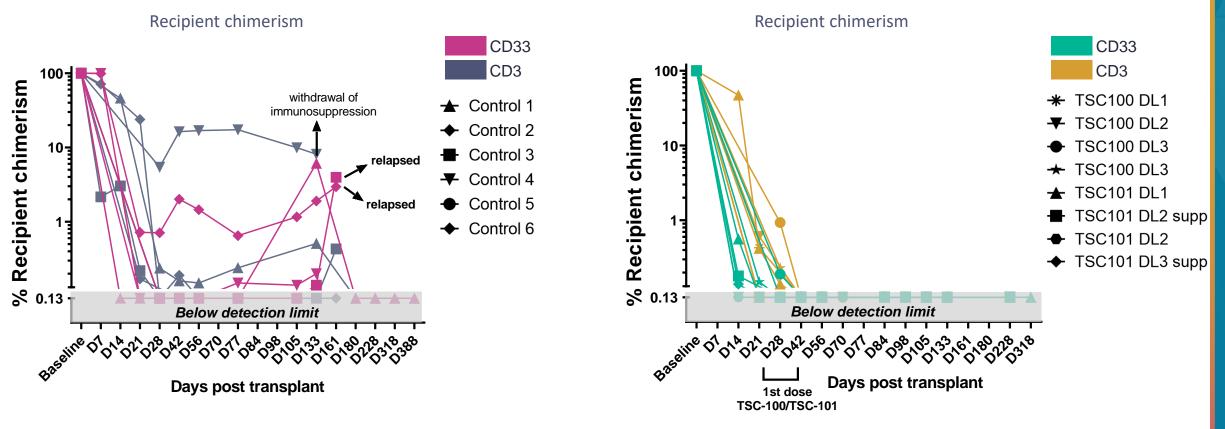
Donor chimerism detected by high-sensitivity next-generation sequencing (NGS) assay (AlloHeme) with limit of detection 0.13% *Measurements taken at indicated day post HCT ± 3 days

TSC-100/101

Mixed donor

Complete donor chimerism

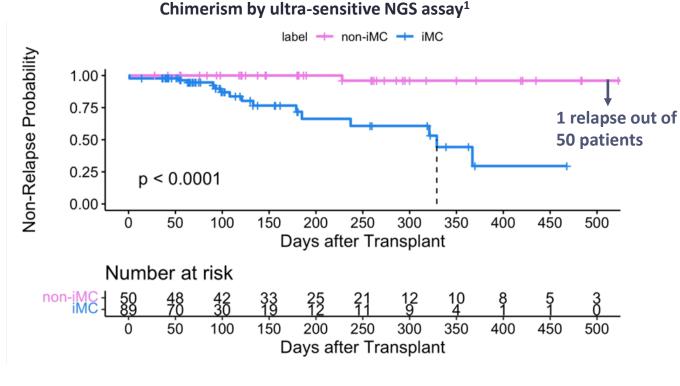
chimerism


Clinical intervention for increasing mixed chimerism

dosing

No relapse and complete chimerism in 100% treatment-arm patients Two relapses and increased mixed chimerism in control-arm patients

Control arm

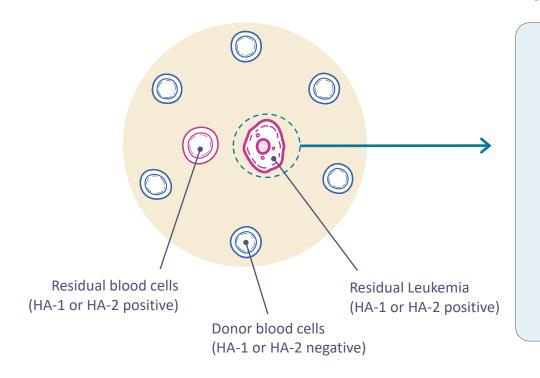


All relapses or adverse outcomes occur with mixed chimerism

* Median post-transplant follow-up in treatment arms: 8 months (range 3-12 months); median follow-up in control arm: 7 months (range 2-15 months)

Early data from ACROBAT trial* show relapse risk is very low in patients with maintained complete chimerism by ultra-sensitive NGS assay

iMC: ≥0.2% increasing mixed chimerism in CD3+, CD33+ or whole blood ¹ Limit of detection ~0.13% recipient chimerism


139 patients with complete NGS and STR chimerism testing, median F/U [Q1,Q3] = 365 [270,484] days

- Early data from the ACROBAT trial suggest a favorable prognosis for patients that rapidly achieve and maintain complete chimerism
- All patients treated with TSC-100/ TSC-101 show complete chimerism at every timepoint to date, suggesting a very low risk of relapse

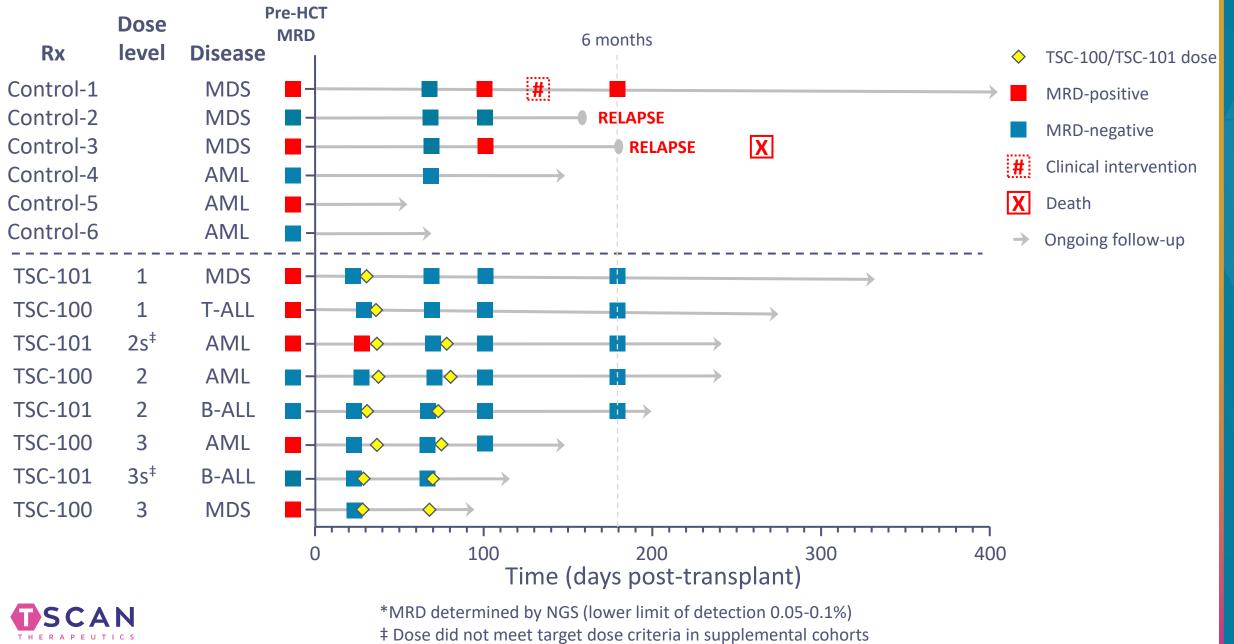
Minimal residual disease serves as a supportive surrogate of efficacy

Post-transplant Patient

Minimal Residual Disease (MRD)

Next-generation sequencing

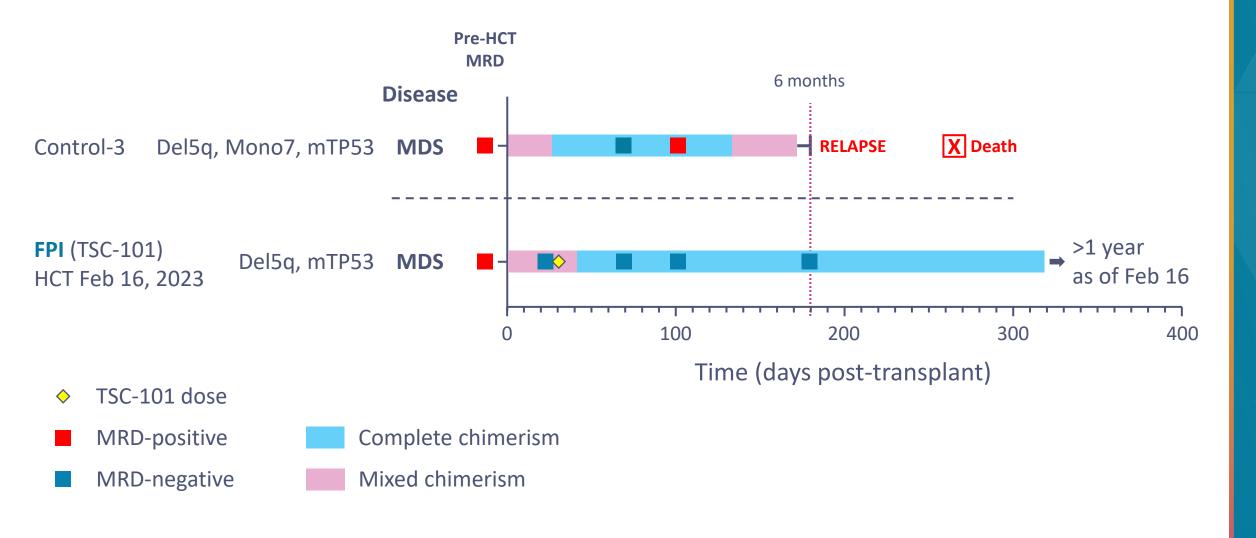
- Deep sequencing of leukemiaassociated genes (centrally)
- Sensitivity 0.05-0.1%


Flow cytometry

- Leukemia-associated immunophenotypes (locally)
- Variable sensitivity

MRD+ patients post-transplant have ~90% chance of relapse^{c,d}

c. Craddock, J Clin Oncol, 2021 d. Loke, ASH, 2021



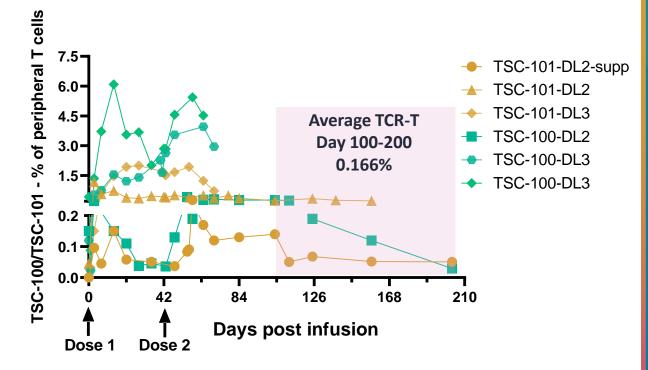
18

All treated patients achieved MRD negativity

Very different outcomes observed for two patients with TP53-mutated MDS

*MRD and chimerism determined by NGS (lower limits of detection 0.1% and 0.13%, respectively)

TSC-100 & TSC-101 persisted in peripheral circulation for over 9 months


- TSC-100 and TSC-101 TCR-T cells detected in all patients at all time points to date
- Repeat dosing resulted in increased levels of circulating TCR-T cells

Persistence of engineered T cells- Dose Level 1 TSC-100/TSC-101 - % of peripheral T cells 4-TSC-101-DL1 TSC-100-DL1 3-Average TCR-T Day 100-200 0.053% 0.2 0.1-0.0-50 200 250 100 150 300 Days post infusion Dose 1

Single dose cohorts

Persistence of engineered T cells- Dose Levels 2,3

Repeat dose cohorts

Most frequent ≥ grade 2 adverse events* were similar between treatment and control arms

Adverse event ≥ Grade 2	TSC-100/TSC-101 arms Highest grade [#] N=8	Control arm Highest grade [#] N=6	
Abdominal pain	2	2	
ALT/ AST increased	NA	3	
Anemia	3	4	
Creatinine Increased	2	2	
Decreased appetite	2	2	
Diarrhea	2	2	
Dyspnea	2	2	
Fatigue	2	2	
Hyperkalaemia	3	2	
Hypogammaglobulinemia	2	2	
Hypomagnesemia	2	2	
Hypophosphatemia	2	2	
Hypotension	3	2	*
Nausea/ vomiting	2	2	
Neck pain	2	3	
Neutropenia	3	4	#
Pneumonia	2	3	
Pyrexia	2	2	

* Events after Day 21 or after TSC-100/TSC-101
Grading by CTCAE v 5.0

TSC-100/TSC-101 arms had median post-HCT follow-up 249 days (90-347 days) Control arm had median post-HCT follow-up 201 days (59-454 days)

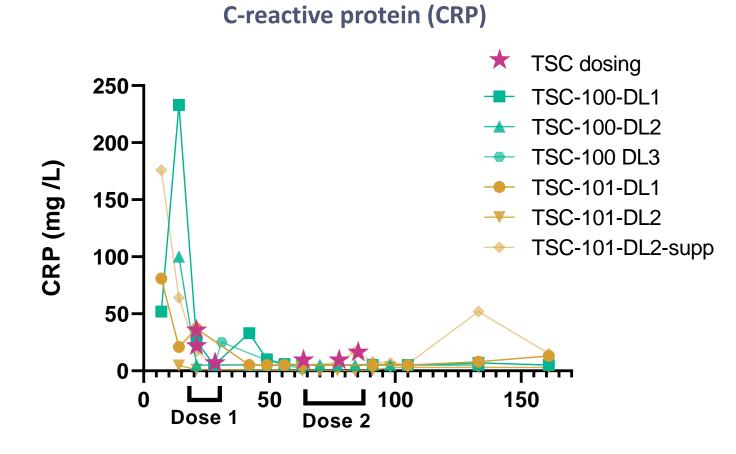
Serious adverse events were similar between treatment and control arms

Arm	Serious Adverse Event	Highest Grade*	Post Transplant Day	TSC Relatedness
TSC-100-DL3	Sepsis, respiratory failure	4	+9	Not applicable (pre-TSC)
TSC-100-DL2	Pyrexia	1	+136	Not related
TSC-100-DL3	Pericardial effusion [#]	4	+77	Not related
TSC-101-DL1	Acute graft versus host disease in gastrointestinal tract [#] , acute kidney injury	3	+49	Possibly related
TSC-101-DL1	Adenovirus viremia, Pneumonia, Clostridium difficile infection	2	+71	Not Related
TSC-101-DL1	Pyrexia	1	+148	Not Related
TSC-101-DL1	Interstitial pneumonitis	2	+182	Not Related
TSC-101-sDL2	HHV-6 reactivation	1	+21	Not applicable (pre-TSC)
TSC-101-sDL2	Influenza viremia, pneumonia, pleural effusion	3	+252	Not Related
TSC-101-sDL3	COVID-19, catheter infection	3	+95	Not Related
Control 3	Cytokine release syndrome	2	+2	Not Applicable
Control 4	Neck pain	3	+53	Not Applicable
Control 2	Acute graft versus host disease in skin	3	+49	Not Applicable
Control 2	Acute graft versus host disease in gastrointestinal tract	3	+53	Not Applicable
Control 2	Pneumonia	3	+56	Not Applicable
Control 5	RSV Pneumonia	3	+28	Not Applicable

SCAN THERAPEUTICS *Grading by CTCAE v5.0 or MAGIC consortium grading for GvHD or ASTCT grading for CRS # Research testing by flow cytometry or immunohistochemistry for TSC-100/101 markers did not find evidence of involvement

Adverse events of special interest similar between treatment and control arms

Arm-Dose Level	Grade*	Adverse Event	HCT Day of Onset	Duration	TSC relatedness
TSC-100-DL2	Grade 1	CRS	+3	2 days	Not applicable (pre-TSC)
TSC-100-DL3	Grade 1	CRS	+3	3 days	Not applicable (pre-TSC)
TSC-101- DL2supp	Grade 2	CRS	+1	3 days	Not applicable (pre-TSC)
TSC-101-DL2	Grade 1	CRS	+1	5 days	Not applicable (pre-TSC)
TSC-101-sDL3	Grade 1	CRS	+1	3 days	Not applicable (pre-TSC)
Control 1	Grade 1	CRS	+2	3 days	Not applicable
Control 2	Grade 1	CRS	+3	2 days	Not applicable
Control 3	Grade 2	CRS	+2	2 days	Not applicable
Control 6	Grade 1	CRS	+1	3 days	Not applicable
TSC-100-DL1	Grade 1	Skin GvHD	+48	8 days	Possibly related
TSC-101-DL1	Grade 3	GI GvHD	+49	8 days	Possibly related
TSC-101-DL2supp	Grade 1	Skin GvHD	+43	3 days	Possibly related
TSC-101-DL2	Grade 1	Skin GvHD	+127	7 days	Possibly related
Control 2	Grade 3	GI GvHD	+53	18 days	Not applicable
Control 2	Grade 3	Skin GvHD	+49	12 days	Not applicable
Control 1	Grade 1	Skin GvHD	+180	pending	Not applicable
Control 3	Grade 1	Skin GvHD	+119	pending	Not applicable

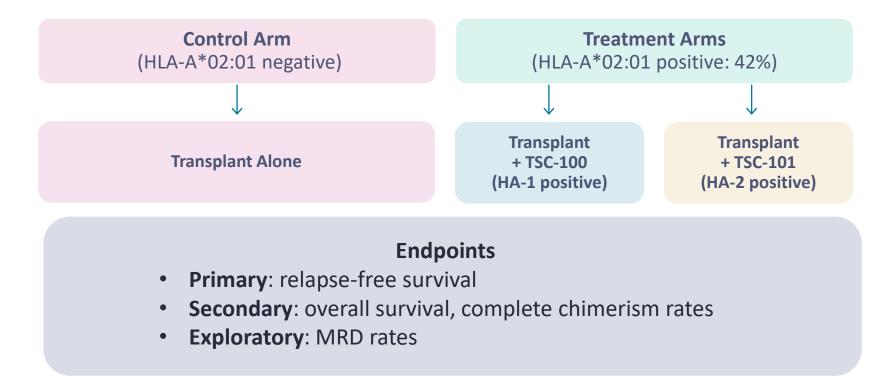

All cytokine release syndrome (CRS) events occurred before TSC-100/ TSC-101 treatment

*MAGIC consortium grading for graft-versus host disease (GvHD); ASTCT grading for cytokine release syndrome (CRS)

Lab markers of CRS changed minimally after TSC-100 or TSC-101 administration

No clinical CRS or neurotoxicity reported after TSC-100 or TSC-101 dosing

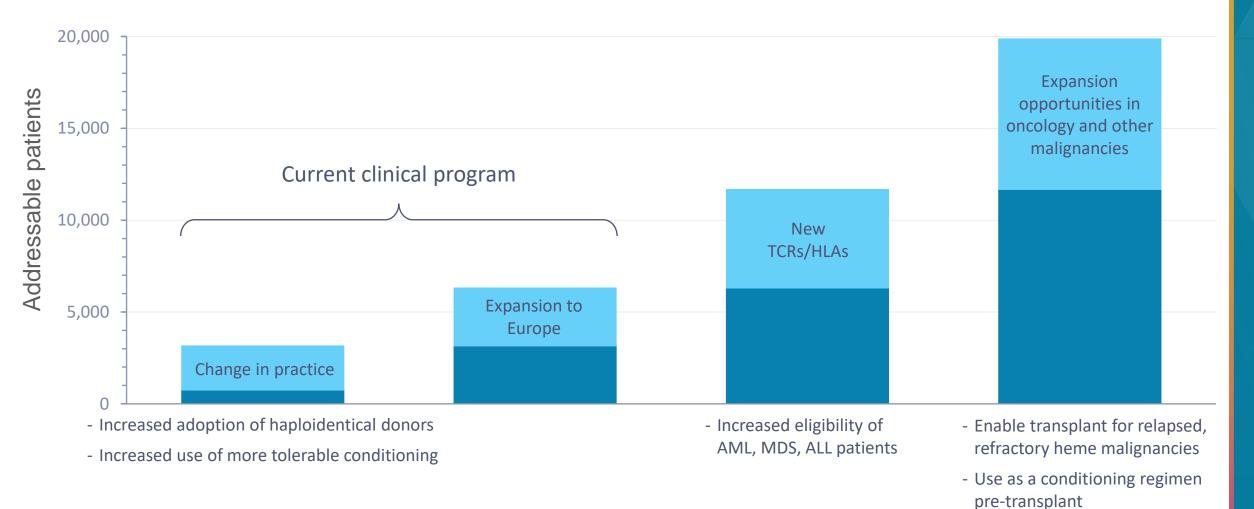
Day post transplant



Summary and next steps

Registrational trial expected to seamlessly transition from Phase 1 design

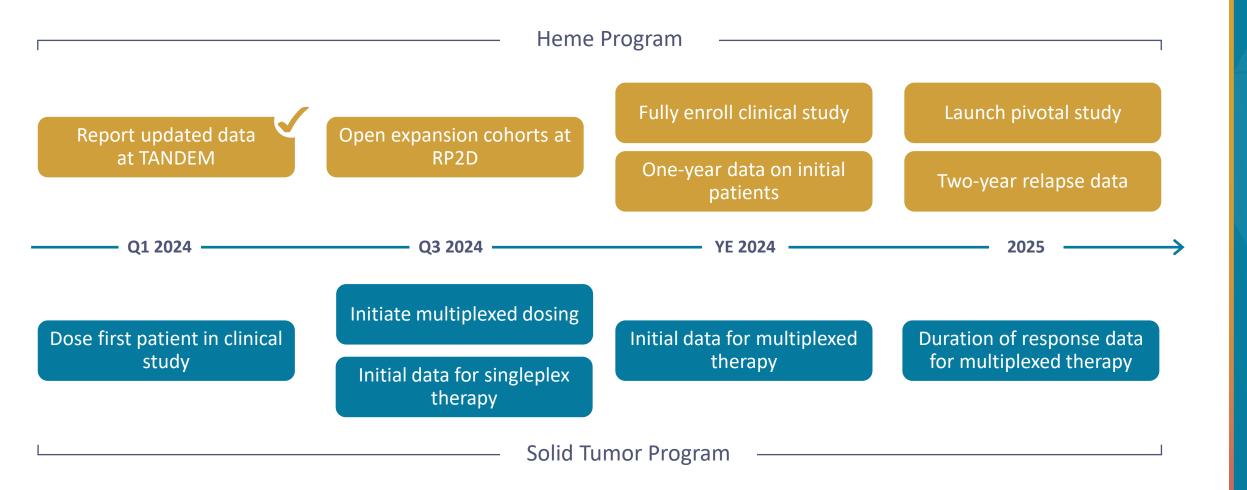
AML, MDS, ALL undergoing haploidentical donor transplant with reduced intensity conditioning



Planned regulatory discussions in 2024

- External control data from CIBMTR to reduce sample sizes
- Chimerism data to support early differences of relapse-free survival
- Accelerated approval based on adaptive trial design and sample size re-estimation

Current program addresses sizable patient population, with several global and lifecycle management opportunities



Summary

- TSC-100 and TSC-101 were generally well-tolerated, with no DLTs and <u>no significant differences in</u> <u>safety</u> between treatment and control arms observed to date^{*}
- Treatment arms (8 patients) showed <u>complete donor chimerism</u> and <u>no evidence of residual disease</u> at every reading starting 3 weeks after their first dose, associated with favorable prognosis
 - All eight patients had <u>no evidence of relapse</u> after TSC-100/ TSC-101 treatment, with five patients on study for >6 months and a TP53 mutated MDS patient with >1 year follow-up
- Both TSC-100 and TSC-101 reached dose level 3 and continue to enroll at the anticipated recommended phase 2 dose
- Four out of six control-arm patients showed <u>increased mixed donor chimerism</u>, and/or <u>minimal</u> <u>residual disease</u>, associated with unfavorable prognosis
 - <u>2 patients relapsed</u> and one other required termination of immune suppression due to worsening chimerism, all before day 180
 - 1 TP53 mutated MDS patient died following relapse

Steady value-generating data flow across clinical programs

Questions and Answers

