

Trial in Progress: A Phase 1 Trial of TSC-100 and TSC-101, Engineered T Cell Therapies That Target Minor Histocompatibility Antigens to Eliminate Residual Disease After Hematopoietic Cell Transplantation Abstract # 798

Monzr M. Al Malki^{1*}, Hyung C. Suh², Alla Keyzner³, Aasiya Matin⁴, Yun Wang⁵, Nina Abelowitz⁵, Jim Murray⁵, Gavin MacBeath⁵, Debora Barton⁵, Shrikanta Chattopadhyay⁵, Ran Reshef⁶

*Presenting author; ¹City of Hope, Duarte, CA,²Hackensack Medical Center, Hackensack, NJ,³Mount Sinai, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY

Disclaimers and forward-looking statements

This presentation and the accompanying discussion contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including, but not limited to, express or implied statements regarding the Company's plans, progress, and timing relating to the Company's solid tumor programs and the presentation of data, the Company's current and future research and development plans or expectations, the structure, timing and success of the Company's planned preclinical development, submission of INDs, and clinical trials, the potential benefits of any of the Company's proprietary platforms, multiplexing, or current or future product candidates in treating patients, and the Company's goals and strategy. TScan intends such forward-looking statements to be covered by the safe harbor provisions for forward-looking statements contained in Section 21E of the Securities Exchange Act of 1934 and the Private Securities Litigation Reform Act of 1995. In some cases, you can identify forward-looking statements by terms such as, but not limited to, "may," "might," "will," "objective," "intend," "should," "could," "can," "would," "expect," "believe," "anticipate," "project," "target," "design," "estimate," "predict," "potential," "plan," "on track," or similar expressions or the negative of those terms. Such forward-looking statements are based upon current expectations that involve risks, changes in circumstances, assumptions, and uncertainties. The express or implied forward-looking statements included in this presentation are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation: the beneficial characteristics, safety, efficacy, therapeutic effects and potential advantages of TScan's TCR-T therapy candidates; TScan's expectations regarding its preclinical studies being predictive of clinical trial results; the timing of the initiation, progress and expected results of TScan's preclinical studies, clinical trials and its research and development programs; TScan's plans relating to developing and commercializing its TCR-T therapy candidates, if approved, including sales strategy; estimates of the size of the addressable market for TScan's TCR-T therapy candidates; TScan's manufacturing capabilities and the scalable nature of its manufacturing process; TScan's estimates regarding expenses, future milestone payments and revenue, capital requirements and needs for additional financing; TScan's expectations regarding competition; TScan's anticipated growth strategies; TScan's ability to attract or retain key personnel; TScan's ability to establish and maintain development partnerships and collaborations; TScan's expectations regarding federal, state and foreign regulatory requirements; TScan's ability to obtain and maintain intellectual property protection for its proprietary platform technology and our product candidates; the sufficiency of TScan's existing capital resources to fund its future operating expenses and capital expenditure requirements; and the effect of the COVID-19 pandemic, including mitigation efforts and political, economic, legal and social effects, on any of the foregoing or other aspects of TScan's business or operations; and other factors that are described in the "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations" sections of TScan's most recent Annual Report on Form 10-K and any other filings that TScan has made or may make with the SEC in the future.

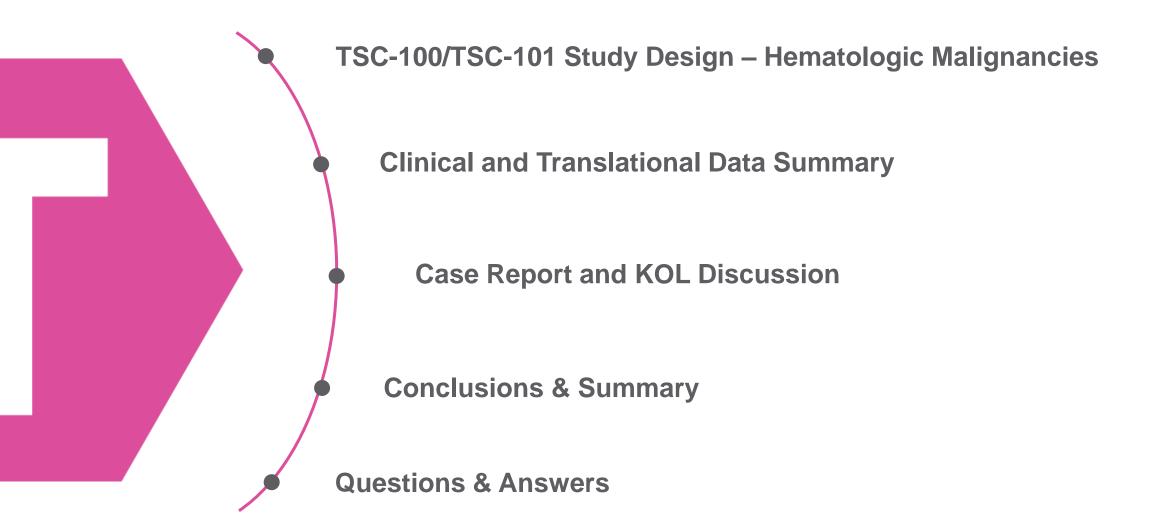
Any forward-looking statements contained in this presentation represent TScan's views only as of the date hereof and should not be relied upon as representing its views as of any subsequent date. Except as required by law, TScan explicitly disclaims any obligation to update any forward-looking statements.

Presenters

Monzr M. Al Malki, M.D.

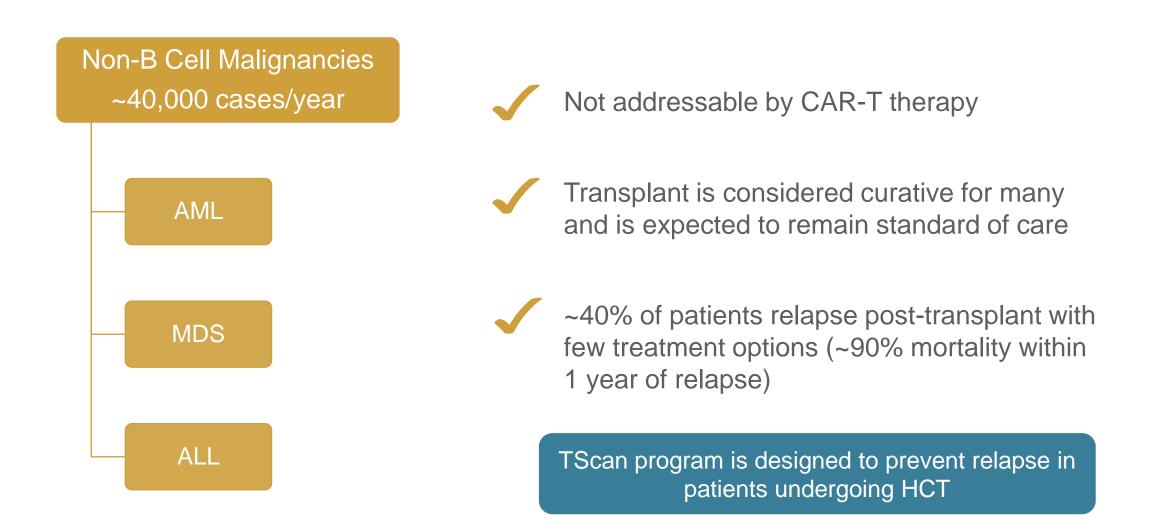
- Hematologist-Oncologist, City of Hope
- Associate Professor, Division of Leukemia, Department of Hematology & Hematopoietic Cell Transplantation
- Director, Unrelated Donor BMT Program
- Director, Haploidentical Transplant Program

Gavin MacBeath, Ph.D. Acting CEO and Chief Scientific and Operating Officer

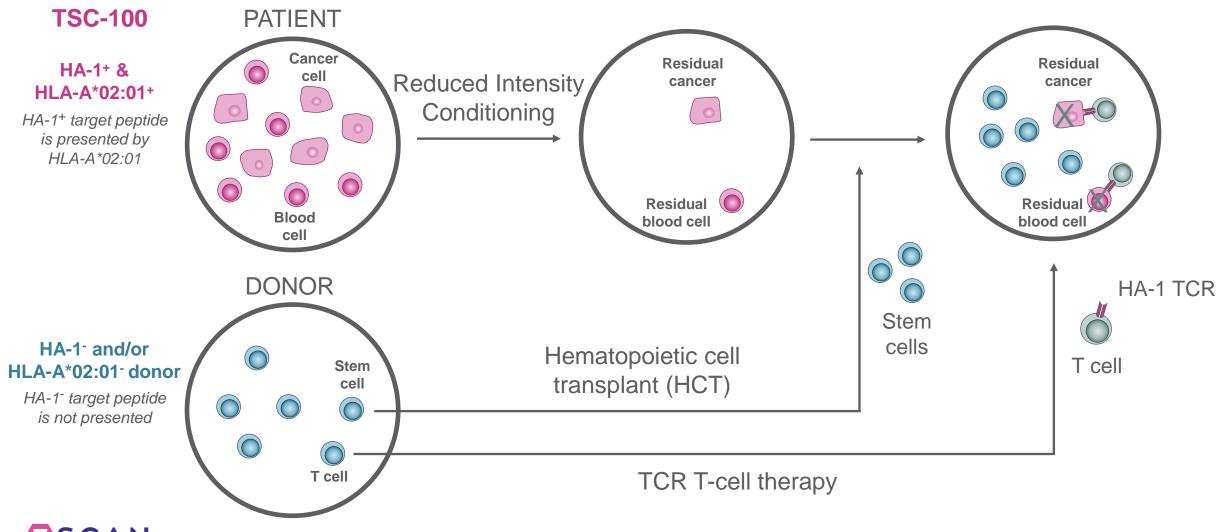

Debora Barton, M.D. Chief Medical Officer

Shrikanta Chattopadhyay, M.D. SVP, Medical, Translational Medicine

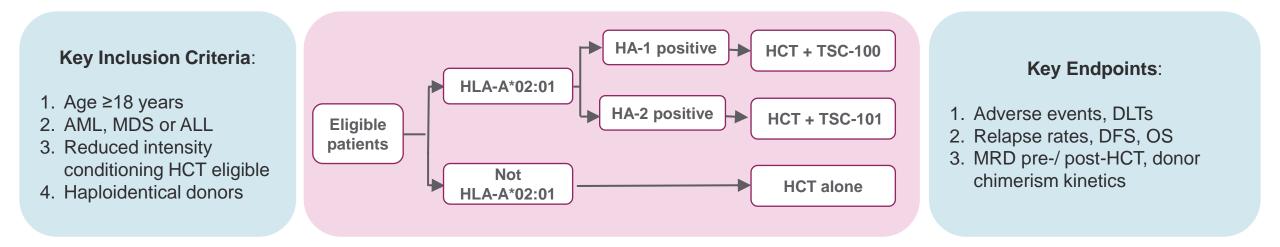
Agenda



Study Design



TCR-T uniquely addresses myeloid leukemias



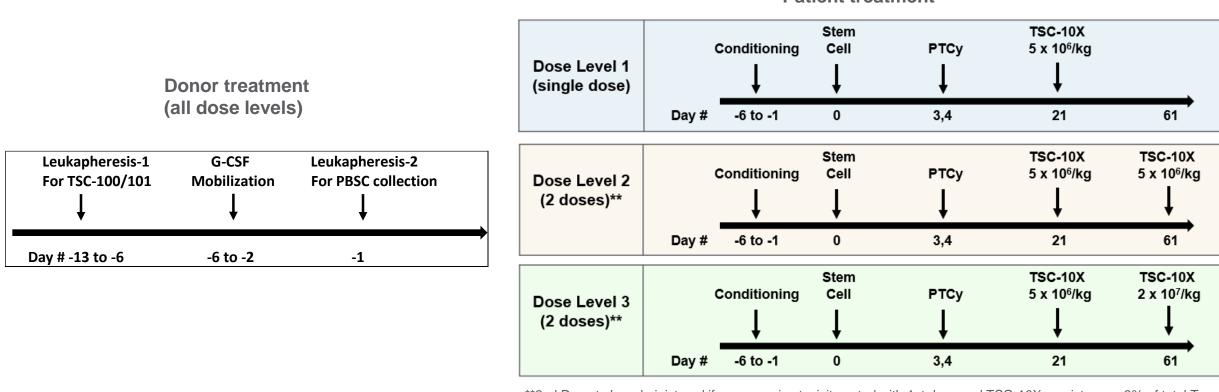
TSC-100 and TSC-101 eliminate residual leukemia after HCT by targeting patient-specific peptides on leukemia cells

USCAN THERAPEUTICS

TSCAN-001 Phase 1 clinical trial design for TSC-100/ TSC-101 in patients undergoing HCT

AML: acute myeloid leukemia, MDS: myelodysplastic syndrome; ALL: acute lymphoblastic leukemia; HCT: hematopoietic cell transplantation; DLTs: dose limiting toxicities; DFS: disease-free survival, OS: overall survival; MRD: minimal residual disease

TScan Therapeutics, Inc. 8


Retrospective analysis of CIBMTR data supports HLA-based assignment

1-year outcomes Percentages (CI)	Relapses	Overall survival	Acute GvHD (II- IV) at 6 months
HLA-A*02:01+	32	67	30
(N=444)	(28-37)	(63-72)	(25-34)
Not HLA-A*02:01	34	66	29
(N=864)	(30-37)	(63-70)	(26-32)

Collaborative analysis with CIBMTR of patients undergoing RIC-HCT from haploidentical donors from 2017-2019 did not find significant differences in outcomes between patients with HLA-A*02:01 and other HLA types. (CI= confidence intervals)

Dose Levels and treatment regimen for donors & patients in treatment arms

Patient treatment

**2nd Dose to be administered if no excessive toxicity noted with 1st dose and TSC-10X persistence <3% of total T cells, after review by the SRC and notification of FDA.

TSC-101 reached Dose Level 2 per Safety Review Committee; TSC-100 awaiting dose escalation

i3+3 design has flexible cohort size from 1-12 participants depending on DLTs at each dose level

	The Number of DLT Evaluable Patients											
	1	2	3	4	5	6	7	8	9	10	11	12
0	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е
1	S	S	S	S	Е	Е	Е	Е	Е	Е	Е	Е
2		DU	D	D	S	S	S	S	Е	Е	Е	Е
3			DU	DU	D	D	D	D	S	S	S	S
4				DU	DU	DU	D	D	D	D	D	S
5					DU	DU	DU	DU	DU	D	D	D
6						DU	DU	DU	DU	DU	DU	D
7							DU	DU	DU	DU	DU	DU
8								DU	DU	DU	DU	DU
9									DU	DU	DU	DU
10										DU	DU	DU
11											DU	DU
12												DU

E: Escalate to the next higher dose; **S**: Stay at current dose; **D**: De-escalate to the previous lower dose; **D**: De-escalate to the previous lower dose and the current dose will never be used again in the study

*The maximum number of participants at each dose level=12, Target toxicity probability=0.3, Equivalent interval=[0.25, 0.35].

DLT=dose limiting toxicity.

Differences of i3+3 design:

- Dose escalation allowed with 1 participant per dose level if no DLTs observed
- Dose level can be de-escalated if DLTs are observed
- i3+3 has flexibility of moving between dose levels unlike the standard 3+3 design

The i3+3 design for phase I clinical trials. Liu et al, J Biopharm Stat;30:294-304 (2020)

TScan Therapeutics, Inc. 11

Clinical Data Summary

Patients have been enrolled into all 3 arms of the study

	TSC-101	TSC-100	Contro	ol Arm
Patient ID	P-004-0001	P-004-0004	P-002-0001	P-007-0001
Diagnosis	MDS with TP53 mutation	T-cell ALL	MDS	MDS
Molecular Markers	Del5q, mTP53	ATM <2%	Trisomy 8	None
Pre-HCT MRD	Positive (TP53 67% VAF)	Negative	Positive (SRSF2 35% VAF)	Negative
RIC regimen	Flu/ Mel/ TBI	Flu/ Cy/ TBI	Flu/ Cy/ TBI	Flu/ Cy/ TBI
Transplant date	16 Feb 2023	21 Mar 2023	01 Nov 2022	03 Feb 2023
TCR-T treatment date	9 Mar 2023	19 Apr 2023	N/A	N/A

Safety: adverse events ≥Grade 2 are similar in all arms

Adverse event ≥Grade 2	TSC-100/ 101 arms Highest Grade	Control arm Highest Grade
Diarrhea	3	2
Anemia	3	4
Fatigue	2	2
Thrombocytopenia	4	4
Vomiting	2	2
Neutropenia	4	4
Hypertension	2	3
Hypomagnesemia	2	1
Skin/GI GVHD	3	3

Safety: serious adverse events (SAEs) post-HCT in all arms

Arm	SAE	Grade	Day post HCT
Control	Skin GvHD	2	+49
Control	GI GvHD	3	+53
Control	Pneumonia	3	+56
TSC-101	GI GvHD	3	+67

Patient 004-0001 treated at City of Hope

52 yo Hispanic male with treatment related MDS (related to prior follicular lymphoma treatment) with 5q deletion and TP53+ mutation

MDS diagnosed: 22 Sep 2022

Prior Treatments :

- Follicular lymphoma: Mosunetuzumab, MALT 1 inhibitorcopanlisib, obinutuzumab/ Revlimid, CAR T cell therapy (axicel)
- MDS: None

Donor description:

- Age: 17
- Gender: male
- Relationship: child
- ID screening results: Neg for CMV/EBV

Medical History: follicular lymphoma, diabetes mellitus, pancytopenia, obstructive uropathy, post covid pulmonary disease, hypogammaglobulinemia

ECOG: 1 (screening period)

MRD status: MRD negative by flow cytometry at screen, MRD+ by NGS (TP53, 67% variant allelic fraction)

RIC Regimen/Date: Flu/Mel / TBI, given 11 Feb 2023

Date of Transplant:

- 16 Feb 2023
- Count recovery occurred on ~ 3/5/23 (Day 17)
- G-CSF was given on 3/9, 3/10, 3/11 (Days 21, 22, 23)

Date of TSC-101 treatment: 9 March 2023 (Day 21)

Dose Level: 4.3×10^{6} / kg (target dose 5×10^{6} / kg) =TOTAL of 4.765×10^{8} cells (476 million cells)

DLTs: <u>None in 40-day monitoring period ending 4/18/23</u> SAEs:

- Acute bronchitis hospitalization 12/27/22-01/05/23, occurred prior to transplant, delayed transplant date
- Hospitalization for Grade 3 gut GvHD and acute kidney injury, 47 days after TSC-101, resolved after steroids

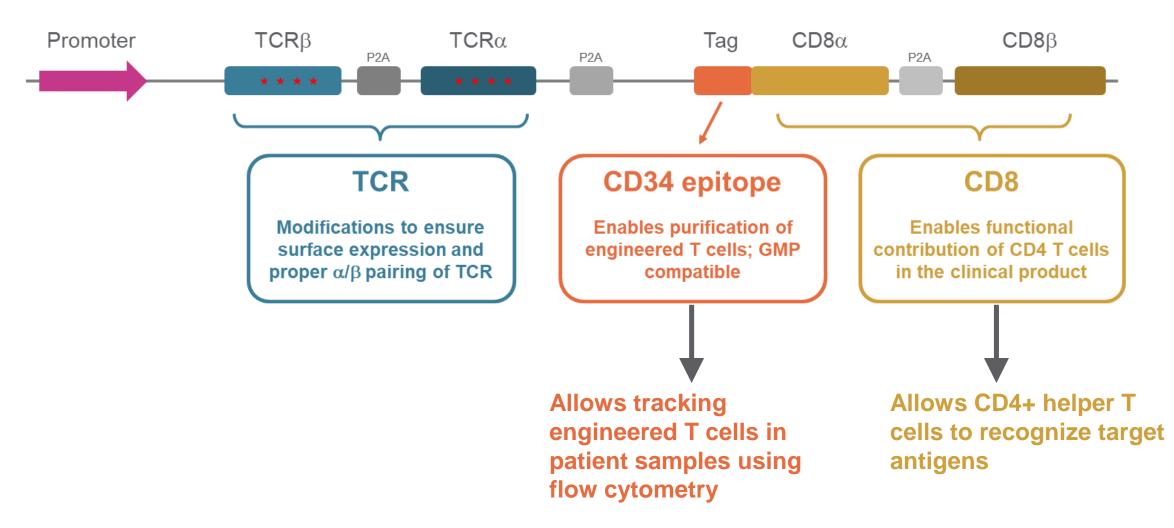
ANC and Platelets- no count drop after TSC-101

Visit	Visit Date	ANC	Platelets
SCREENING	21-Dec-22	3.1	72
RIC Treatment (Day -6 to -1)	11-Feb-23	0.9	108
Hematopoietic cell infusion/PTCy (Day 0)	16-Feb-23	ND	38
Day 3	19-Feb-23	UNK	12
Day 4	20-Feb-23	UNK	7
Day 7	23-Feb-23	ND	10
Day 14	2-Mar-23	ND	9
Day 21 **TSC101 Treatment given	<mark>9-Mar-23</mark>	<mark>0.8</mark>	<mark>15</mark>
Day 28	16-Mar-23	2.1	21
Day 35	23-Mar-23	2.7	27
Day 42	30-Mar-23	3.4	56

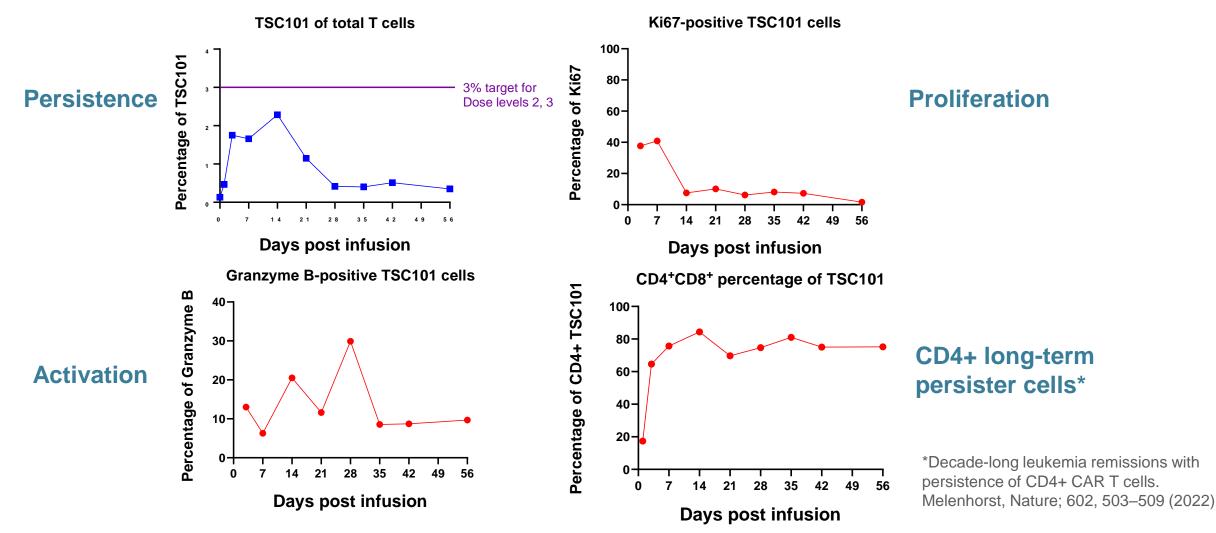
No cytokine release syndrome symptoms or ferritin/ CRP increase after TSC-101 treatment

Transplant Day	Visit Date	CRP	Ferritin
Day 7	23-Feb-23	52	959.4
Day 14	2-Mar-23	233	2146
Day 21 **TSC101 Treatment **	9-Mar-23	26	1375
Day 28	16-Mar-23	5	1486
Day 42	30-Mar-23	33	990.9

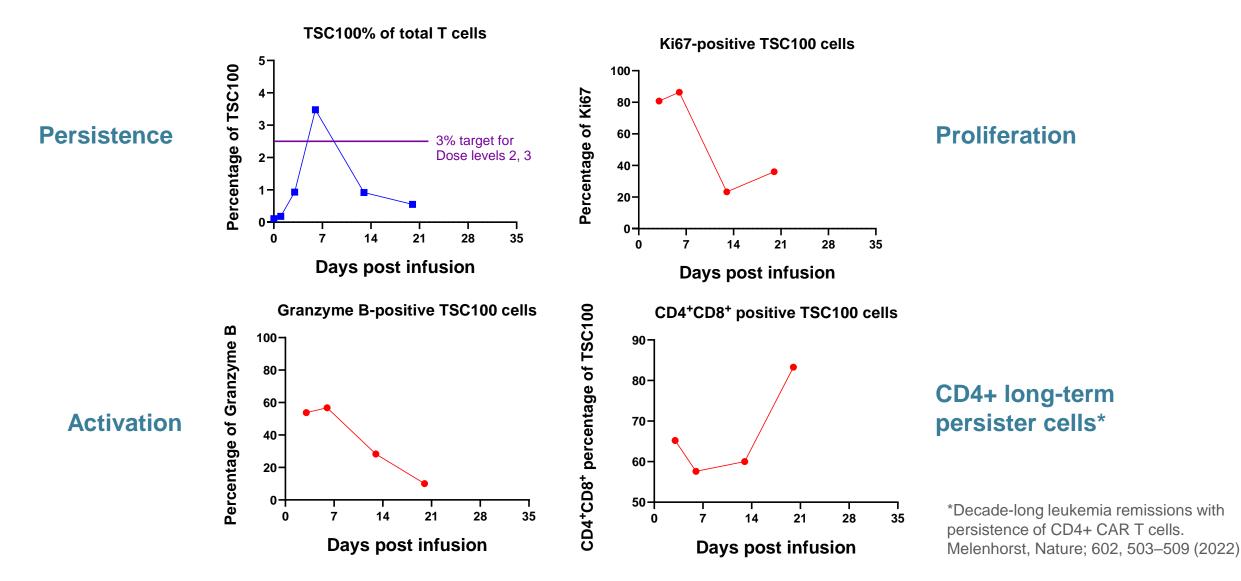
C-Reactive Protein: marker of IL-6; Ferritin: marker of TNF-alpha


Note: CRS is rare with TCR-T treatment post-HCT (Chapuis et al, Nat Medicine 2019; 25:1064-1072)

Translational Data Summary



Vector for TSC-100 and TSC-100 enables tracking engineered T cells in vivo, CD4+ T cells to recognize target antigen



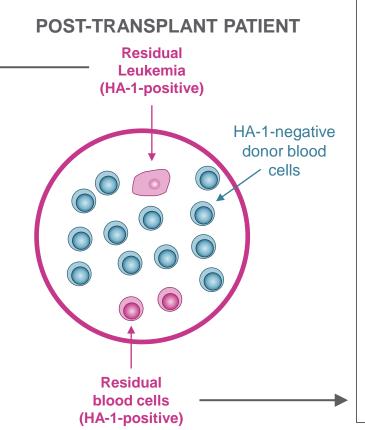
TSC-101 cells show expansion, proliferation, activation and persistence by flow cytometry

TSC-100 cells show early expansion, activation & proliferation

Key biomarkers measure residual leukemia or residual patient-derived blood cells as surrogates of efficacy

Minimal Residual Disease (MRD)

Conventional


- MRD by flow cytometry
- Sensitivity ~0.1% ٠
- Performed at local sites

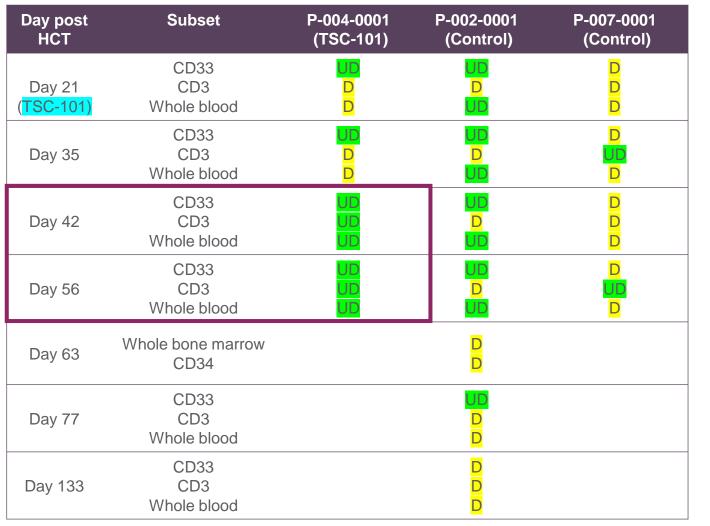
High sensitivity

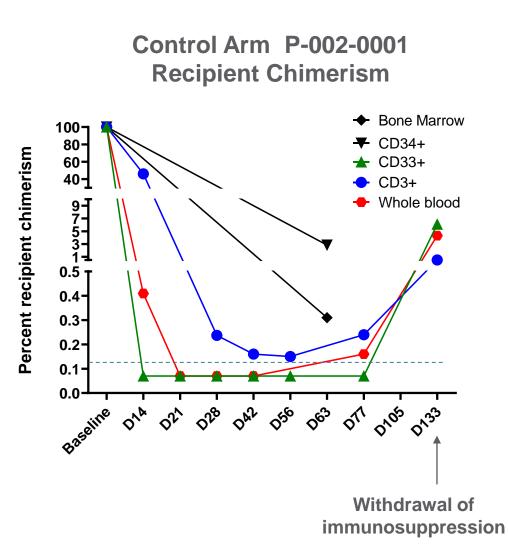
- MRD by NGS and ddPCR
- Sensitivity ~0.01%
- Performed at Columbia University

MRD+ patients post-transplant (~30%) have ~90% chance of relapse^{1,2}.

Mixed donor cell chimerism

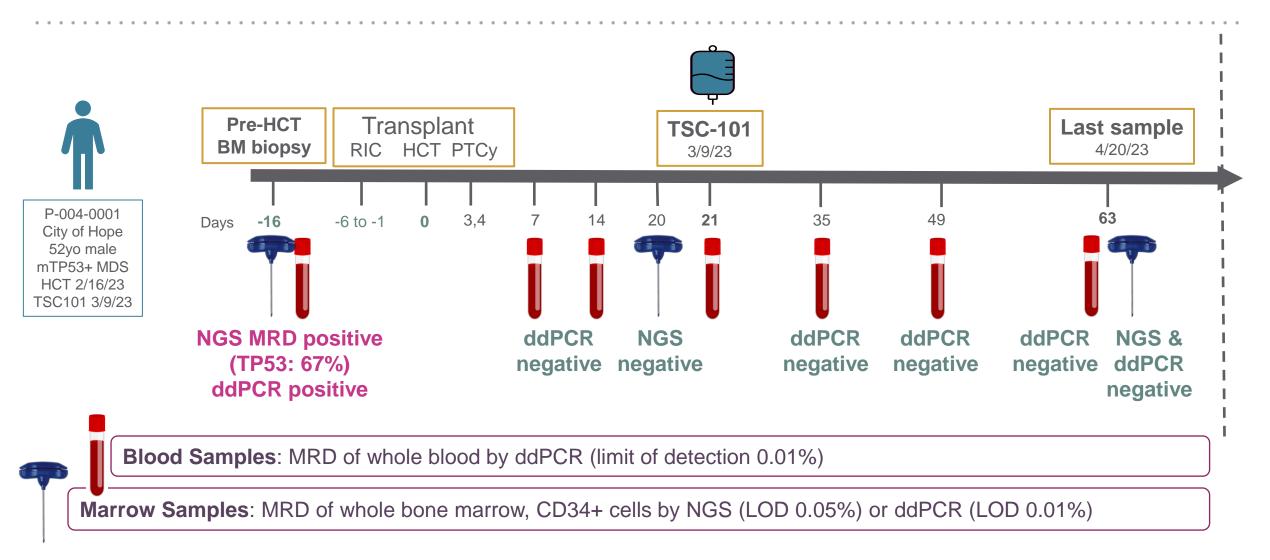
Conventional


- STR assay
- Sensitivity ~1%
- Performed at LabCorp


High sensitivity

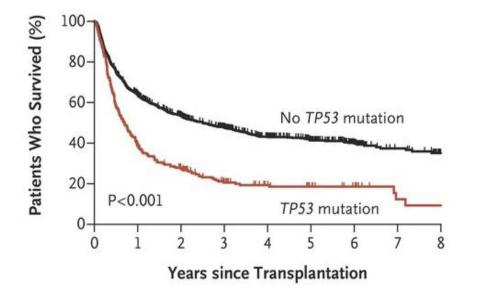
- NGS-based Alloheme assay •
- Sensitivity ~0.13%
- Performed by CareDx

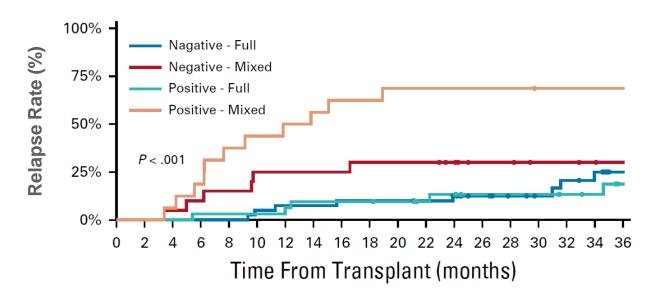
TSC-101 treated patient shows undetectable patient (recipient) chimerism compared to control arm patients



UD: undetectable, **D**: detectable

Recipient chimerism detected by high-sensitivity NGS-assay (Alloheme) with LOD 0.13%


TP53 mutant MDS patient turned from MRD positive pre-HCT to MRD negative post-HCT and TSC-101 treatment



Achieving MRD negativity and full donor chimerism post-HCT is generally meaningful, particularly in TP53 mutant patients

TP53 mutant MDS patients have >80% risk of relapse/ death after HCT

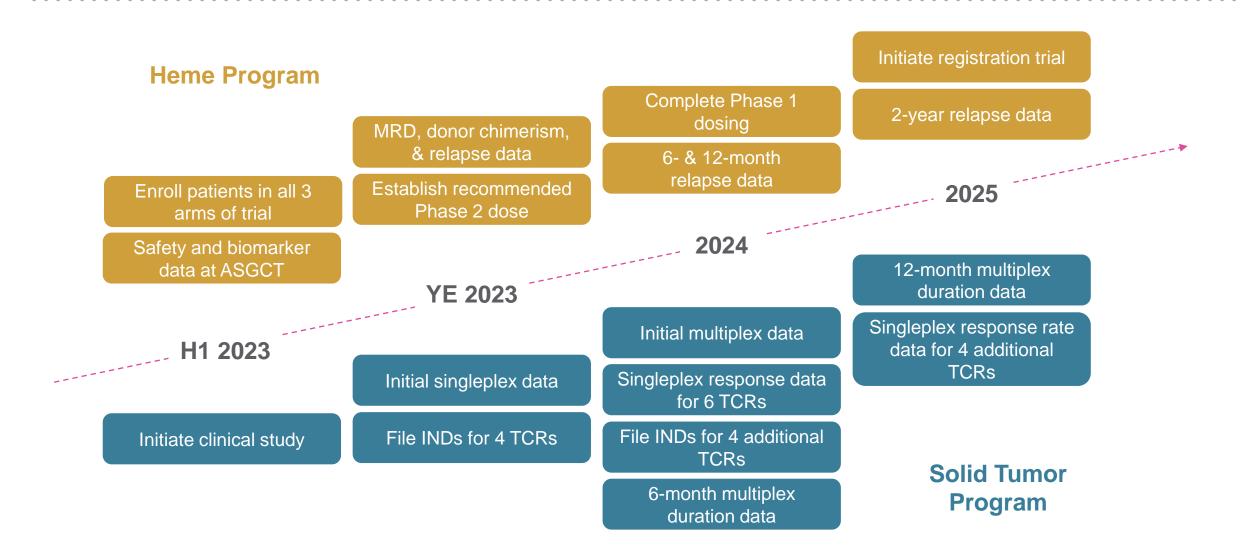
Prognostic Mutations in Myelodysplastic Syndrome after Stem-Cell Transplantation Lindsley RC et al., N Engl J Med 2017;376:536-547. MRD negativity with full donor chimerism post-HCT associate with low risk of relapse for AML

Caveats:

- 1. AML patients treated with different RIC regimen (FLAMSA-Bu)
- 2. MRD measured at Day 42 by flow alone (16% positivity post-HCT)
- 3. Chimerism measured around Day 90 in CD3+ subset alone

Craddock C et al., J Clin Oncol 2021; 39:768-778.

Conclusions & Summary



Summary of clinical and translational data

- Four patients enrolled: one in TSC-101 arm, one in TSC-100 arm, two in control arm
- No safety concerns noted with TSC-101 or TSC-100 to date
- Safety Review Committee approved escalation to dose level 2 for TSC-101
- Peripheral blood sampling reveals expansion, proliferation, activation and persistence of TSC-101 and TSC-100
- Recipient chimerism is undetectable in TSC-101 treated patient compared with 2 control arm patients using high-sensitivity NGS method
- TP53 mutant MDS patient turned from MRD+ pre-HCT to MRD negative post-HCT and TSC-101 treatment using high-sensitivity NGS/ ddPCR methods

Steady value-generating data flow across clinical programs

Questions and Answers

